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Necessary and sufficient conditions for regional stabilisability of generic

switched linear systems with a pair of planar subsystems
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In this article, the regional stabilisability issues of a pair of planar LTI systems are investigated through the
geometrical approach, and easily verifiable necessary and sufficient conditions are derived. The main idea of
the article is to characterise the best case switching signals based upon the variations of the constants of the
integration of the subsystems. The conditions are generic as all possible combinations of the subsystem dynamics
are considered.

Keywords: switched linear systems; stabilisability; geometrical approach; best case analysis

1. Introduction

A switched system is a type of hybrid system which
comprises a collection of discrete-time or continuous-
time dynamic systems described by difference or
differential equations and a switching rule that
specifies the switching between the subsystems. Many
real-world processes and systems, for example, chem-
ical, power systems and communication networks, can
be modelled as switched systems. The last decade has
witnessed increasing research activities in this area due
to its success in application and importance in theory.
Among the various research topics, stability and
stabilisation issues have attracted most of the atten-
tion, for example, Morse (1996), Narendra and
Balakrishnan (1997), Dayawansa and Martin (1999),
Hespanha and Morse (1999), Liberzon, Hespanha, and
Morse (1999), Shorten and Narendra (1999), Decarlo,
Braanicky, Pettersson, and Lennartson (2000),
Narendra and Xiang (2000), Pettersson (2003) and
Cheng (2004). For more references, the reader may
refer to the survey papers by Liberzon and Morse
(1999), Lin and Antsaklis (2005) and the recent books
by Liberzon (2003), Sun and Ge (2005).

There are two categories of stabilisation strategies
for switched systems. The first one is feedback stabi-
lisation, where the switching signals are assumed to be
given or restricted. The problem is to design appro-
priate feedback control laws, in the form of state or
output feedback, to make the closed-loop systems
stable under these given switching signals. Several
classes of switching signals are considered in the

literature, for example arbitrary switching (Daafouz,

Reidinger, and Iung 2002), slow switching (Cheng,

Guo, Lin, and Wang 2005) and restricted switching

induced by partitions of the state space (Cuzzola and

Morari 2002; Rodrigues, Hassibi, and How 2003;

Arapostathis and Broucke 2007, etc.).
Besides the feedback stabilisation described above,

switching stabilisation has also been investigated. It is

known that even when all the subsystems are unstable,

it is still possible to stabilise the switched system by

designing the switching signals carefully. It leads to a

very interesting question: how ‘unstable’ these sub-

systems are while there still exist switching signals to

stabilise them. This is usually referred to in the

literature as the switching stabilisability problem,

which is the focus of this article.
Early efforts on this issue focused on quadratic

stabilisation using a common quadratic Lyapunov

function. For example, a quadratic stabilisation

switching law between two LTI systems was considered

by Wicks, Peleties, and DeCarlo (1998), in which it was

shown that the existence of a stable convex combina-

tion of the two subsystem matrices implies the

existence of a state-dependent switching rule that

stabilises the switched system along with a quadratic

Lyapunov function. The stable convex combination

condition was also shown to be necessary for the

quadratic stabilisability of two-mode switched LTI

system by Feron (1996). However, it is only sufficient

for switched LTI systems with more than two modes.

A necessary and sufficient condition for quadratic
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stabilisability of more general switched systems
was derived by Skafidas, Evans, Savkin, and Petersen
(1999). There are other extensions of Wicks et al.
(1998) to output-dependent switching by Liberzon and
Morse (1999) and to the discrete-time switched systems
with polytopic uncertainty based on linear matrix
inequalities by Zhai, Lin, and Antsaklis (2003).
However, all of these methods which guarantee qua-
dratic stabilisation, are conservative in the sense that
there are switched systems that can be asymptotically
stabilised without using a common quadratic
Lyapunov function (Hespanha, Liberzon, Angeli, and
Sontag 2005). More recent efforts were based on
multiple Lyapunov functions (Branicky 1998), espe-
cially piecewise Lyapunov functions (Wicks and
DeCarlo 1997; Ishii, Basar, and Tempo 2003;
Pettersson 2003), to construct stabilising switching
signals.

Note that the existing stabilisability conditions,
which may be expressed as the feasibility of certain
linear/bilinear matrix inequalities, are sufficient only
except for certain cases of quadratic stabilisation. An
algebraic necessary and sufficient condition for asymp-
totic stabilisability of second-order switched LTI
systems was derived by Xu and Antsaklis (2000)
using detailed vector field analysis. Similar idea was
also applied in recent works (Zhang, Chen and Cui
2005; Bacciotti and Ceragioli 2006). However, all these
conditions are not generic as not all the possible
combinations of subsystem dynamics were considered.
Recently, another necessary and sufficient algebraic
condition was proposed by Lin and Antsaklis (2007)
for the global stabilisability of switched linear system
affected by parameter variations. However, the check-
ing of the necessity is not easy in general.

This article aims to derive easily verifiable, neces-
sary and sufficient conditions for the switching
stabilisability of switched linear systems. In particular,
we consider the switched systems with a pair of second-
order continuous-time LTI subsystems:

Sij : _x ¼ �x � ¼ fAi,Bjg ð1Þ

where Ai,Bj2 IR
2�2 are not asymptotically stable, and

i, j2 {1, 2, 3} denote the types of A and B, respectively.
A matrix A2 IR2�2 is classified into three types
according to its eigenvalue and eigenstructure. Type 1:
A has real eigenvalues and diagonalisable; Type 2:A has
real eigenvalues but undiagonalisable; Type 3: A has
two complex eigenvalues.

For the convenience of discussion and presentation,
two types of asymptotic stabilisability are defined as
follows.

Definition 1: The switched system (1) is said to be
globally asymptotically stabilisable (GAS), if for any

non-zero initial state, there exists a switching signal

under which the trajectory will asymptotically con-

verge to zero.

Definition 2: The switched system (1) is said to be

regionally asymptotically stabilisable (RAS), if there

exists at least one region (non-empty, open set) such

that for any initial state in that region, there exists a

switching signal under which the trajectory will

asymptotically converge to zero.

In addition to the global asymptotic stabilisability,

which is the focus of the most of the research in the

literature, regional asymptotic stabilisability will also

be considered in this article. It is due to the fact that

there exists a class of switched systems which are not

GAS, but still can be stabilised if the initial state is

within certain regions. Those switched systems are not

hopeless compared to the ones which cannot be

stabilised for any initial state. In practice, it is quite

possible that the initial state is fortunately within the

stabilisable region.
The main technique for stabilisability analysis

throughout the whole article is based on the charac-

terisation of the ‘best’ case switching signal (BCSS) for

the given switched system. The logic is very simple: if

the switched system cannot be stabilised under the

most ‘stable’ switching signal, then the switched system

is not stabilisable. The similar approach has been used

to study the stability of switched second-order LTI

systems under arbitrary switching by Boscain (2002)

and Huang, Xiang, Lin, and Lee (2007) and absolute

stability of second-order linear systems by Margaliot

and Langholz (2003) using the ‘worst’ case switching

signal. In this article, the BCSS is identified based upon

the variation of the constants of integration of

individual subsystems.
The article is organised as follows. In Section 2,

polar coordinates are utilised to analyse the switched

system and to construct functions to describe the

variation of the constants of integration. In Section 3,

the core concept of the BCSS is introduced and

characterised. In Section 4, the main result regarding

an easily verifiable, necessary and sufficient condition

for stabilisability of the switched system

Sij : _x ¼ �x, � ¼ fAi,Bjg,Ai,Bj 2 IR2�2,

Ref�Ai
g4 0, Ref�Bj

g4 0
ð2Þ

is derived, where Re{�Ai
} denotes the real parts of the

eigenvalues of Ai. In Section 5, the result is extended to

the switched system

Sij : _x ¼ �x, � ¼ fAi,Bjg,Ai,Bj 2 IR2�2,

Ref�Ai
g � 0, Ref�Bj

g � 0,
ð3Þ
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and the switched system consisting of at least one
subsystem (assumed to be A1) has a negative real
eigenvalue

Sij : _x ¼ �x, � ¼ fA1,Bjg, A1,Bj 2 IR2�2, ð4Þ

where �1A�2A� 0 and Bj is not asymptotically stable.
When �1A�2A50, A1 is a saddle point. When
�1A�2A¼ 0, A1 is marginally stable but not asympto-
tically stable.

In Section 6, we discuss the connections between the
stabilisability conditions derived in this article and
the ones in the literature. Finally, Section 7 concludes
the article.

2. Mathematical preliminaries

2.1 Solution of a second-order LTI system in polar
coordinates

Consider a second-order LTI system

_x ¼ Ax ¼
a11 a12

a21 a22

� �
x ð5Þ

and define x1¼ r cos �, x2¼ r sin �, it follows that

dr

dt
¼ r½a11 cos

2 �þ a22 sin
2 �þ ða12þ a21Þ sin� cos�� ð6Þ

d�

dt
¼ a21 cos

2 � � a12 sin
2 � þ ða22 � a11Þ sin � cos � ð7Þ

When d�
dt
¼ 0, it corresponds to the real eigenvector

of A. The solutions on the real eigenvectors are
r¼ r0e

�At, where r0 is the magnitude of the initial
state and �A is the corresponding eigenvalue of the real
eigenvector.

Since the BCSS is straightforward on the eigenvec-
tors, we focus on the trajectories not on the
eigenvectors.

When d�
dt
6¼ 0,

dr

d�
¼ r

a11 cos
2 �þ a22 sin

2 �þ ða12þ a21Þ sin� cos�

a21 cos2 �� a12 sin
2 �þ ða22� a11Þ sin� cos�

: ð8Þ

Denote

f ð�Þ ¼
a11 cos

2 �þ a22 sin
2 �þ ða12þ a21Þ sin� cos�

a21 cos2 �� a12 sin
2 �þ ða22� a11Þ sin� cos�

ð9Þ

we have

1

r
dr ¼ f ð�Þd�: ð10Þ

Lemma 1: The trajectories of the LTI system (5) in r–�
coordinates, except the ones along the eigenvectors, can
be expressed as

rð�Þ ¼ Cgð�Þ, ð11Þ

where gð�ðtÞÞ ¼ e

R �ðtÞ
��

f ð�Þd�
is positive and C is a positive

constant depending on the initial state (r0, �0), the
so-called constant of integration. Note that �� can be
chosen as any value except the angle of any real
eigenvector of A.

Proof: By integrating both sides of (10), we haveZ r

r0

1

r
dr ¼

Z �

�0

f ð�Þd�¼) ln r ¼

Z �

�0

f ð�Þd� þ ln r0

¼)rð�Þ ¼ r0e

R �
�0
f ð�Þd�

: ð12Þ

Equation (12) can be rewritten as (13) by splitting
the integral interval,

rð�Þ ¼ r0e

R �
�0
f ð�Þd�
¼ r0e

R ��
�0

f ð�Þd�
e

R �
��

f ð�Þd�
: ð13Þ

Denote the angle of the eigenvector of A as �e.
Since �� 6¼ �e, � 6¼ �e, the integrals

R ��
�0

f ð�Þd� andR �
�� f ð�Þd� are bounded

1 and (13) can be further reduced

to (11). It can be readily seen that C ¼ r0e

R ��
�0

f ð�Þd�
is a

constant determined by the initial state (r0, �0).
Typical phase trajectories of planar LTI systems in

polar coordinates are shown in Figure 1. It follows
from (12) that

rð� þ �Þ

rð�Þ
¼

r0e

R �þ�
�0

f ð�Þd�

r0e

R �
�0
f ð�Þd�

¼ e

R �
0
f ð�Þd�

ð14Þ

which is a constant since f(�) is a periodical function
with a period of �. Therefore, it is sufficient to analyse
the stability of systems (5), regardless of the types of A,
in an interval of � with the length of �. Without loss of
generality, this interval is chosen to be � 2 ½� �

2 ,
�
2Þ.

Remark 1: It was shown that C is the constant of
integration that depends on the initial state. It remains
the same along the trajectories of A. Geometrically, a
larger C indicates an outer layer trajectory as shown in
Figure 1, where C15C25C3 � � �5Cn. Note that when
A has real eigenvalues, Equation (11) does not only
represent a single trajectory, but an assembly of
trajectories. More precisely, for each trajectory corre-
sponding to some constant of integration lying to the
right of the eigenvector direction, there exists one
and only one trajectory corresponding to the same
constant of integration and lying to the left of the
eigenvector direction such that (11) holds. It is also
worth noting that r(t) will go to infinity because g(�)
will go to infinity as � approaches the asymptote of an
unstable A.

Definition 3: The line �¼ �a is said to be asymptote of
A in r� � coordinates if the angle of the trajectory
of _x ¼ Ax approaches �a as the time t!þ1.
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Similarly, the line �¼ �na is said to be non-asymptote of

A if the angle of the trajectory of _x ¼ Ax approaches

�na as the time t!�1.
For a given A2 IR2�2 with real eigenvalues, the

asymptote �a is the angle of the real eigenvector

corresponding to the larger eigenvalue of A. This

definition is applicable to all matrices A2 IR2�2 with

real eigenvalues regardless of the dynamics of A

(stable/unstable node, saddle point). If A is a

degenerate node (has only one eigenvector with an

angle �r), �a and �na are chosen from �þr or ��r based on

the trajectory direction of A.
Note that the asymptote of A3 in r� � coordinates

is actually �a¼þ1 if the trajectories of A3 are counter

clockwise and �a¼�1 if the trajectories of A3 are

clockwise.

2.2 Solution of the switched system (1) in polar
coordinates

In this subsection, we proceed to analyse the switched

system (1) with two unstable subsystems. Using the

variation of the subsystems’ constants of integration,

we reveal how a convergent trajectory can be con-

structed by switching between two unstable

subsystems.
First of all, the two subsystems are defined in terms

of their entries.

�A : _x ¼ Ax ¼
a11 a12

a21 a22

" #
x ð15Þ

�B : _x ¼ Bx ¼
b11 b12

b21 b22

� �
x ð16Þ

Assumption 1: A 6¼ cB, c2 IR.

Assumption 2: Ai and Bj do not share any real

eigenvector.

The special cases that Assumption 2 is violated will

be discussed in Appendix A, just for the completeness

of the results.

Following the definition of f(�) in Equation (8), we

define fA(�) and fB(�) for subsystems A and B

respectively.

fAð�Þ ¼
a11 cos

2 � þ a22 sin
2 � þ ða12 þ a21Þ sin � cos �

a21 cos2 � � a12 sin
2 � þ ða22 � a11Þ sin � cos �

ð17Þ

fBð�Þ ¼
b11 cos

2 � þ b22 sin
2 � þ ðb12 þ b21Þ sin � cos �

b21 cos2 � � b12 sin
2 � þ ðb22 � b11Þ sin � cos �

:

ð18Þ

It follows from Lemma 1 that for subsystem A,

r ¼ CAe
R

fAð�Þd� ¼ CAgAð�Þ ð19Þ

and for subsystem B,

r ¼ CBe
R

fBð�Þd� ¼ CBgBð�Þ: ð20Þ

By combining (19) and (20), the trajectories of the

switched system, except the ones along the eigenvec-

tors, can be described as

rðtÞ ¼ hAð�ðtÞÞ gAð�ðtÞÞ, ð21Þ

where

hAð�ðtÞÞ ¼
CAðtÞ, �ðtÞ ¼ A

CBðtÞ
gBð�ðtÞÞ
gAð�ðtÞÞ

, �ðtÞ ¼ B

(
ð22Þ

or similarly

rðtÞ ¼ hBð�ðtÞÞ gBð�ðtÞÞ, ð23Þ
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Figure 1. The phase diagrams of second-order LTI systems in polar coordinates: (a) node, (b) saddle point and (c) focus.
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where

hBð�ðtÞÞ ¼
CAðtÞ

gAð�ðtÞÞ
gBð�ðtÞÞ

, �ðtÞ ¼ A

CBðtÞ, �ðtÞ ¼ B

(
: ð24Þ

For convenience, we denote

HAð�ðtÞÞ ¼
4 dhAð�ðtÞÞ

dt

����
�ðtÞ¼B

, HBð�ðtÞÞ ¼
4 dhBð�ðtÞÞ

dt

����
�ðtÞ¼A

:

ð25Þ

Equation (21) indicates that even when the actual

trajectory follows �B, it can still be described by the

same form as that of the solution of �A with a varying

hA. Thus, we can use the variation of hA to describe the

behaviour of the switched system (1), as shown in

Figure 2.
Geometrically, a negative HA(�), or equivalently a

decrease in hA(�), means that the vector field of �B

points inwards relative to �A. Intuitively, if the

decrease in hA can compensate the divergence of gA
for a long term, or in a period of �(t), then it is possible

to stabilise the switched system (1). Although the

existence of negative HA(�) or HB(�) is considered to be

necessary, it is not sufficient for stabilisability.

Therefore, a comprehensive analysis is needed.

3. Characterisation of the BCSS

As mentioned before, if we are able to find the BCSS

for a given switched system, then the stabilisability

problem can be transformed to the stability problem

under the BCSS. To find the BCSS, we need to know

which subsystem is more ‘stable’ for every � and how �
varies with the time t. The former is determined

through the signs of HA(�) and HB(�) (25), while the

latter is based on the signs of QA(�) and QB(�) which

are defined as

QAð�ðtÞÞ ¼
4 d�

dt

����
�¼A

, QBð�ðtÞÞ ¼
4 d�

dt

����
�¼B

: ð26Þ

It follows from Equations (22) and (25) that

HAð�ðtÞÞ ¼
dhAðtÞ

dt

����
�ðtÞ¼B

¼CBðtÞ
gBð�ðtÞÞ

gAð�ðtÞÞ

� �0

¼ �CBðtÞ
gBð�ðtÞÞ

gAð�ðtÞÞ
½ fAð�ðtÞÞ� fBð�ðtÞÞ�

d�ðtÞ

dt

����
�ðtÞ¼B

,

ð27Þ

where CB(t) is a constant since �(t)¼B in (27).
Similarly, we have

HBð�ðtÞÞ ¼ CAðtÞ
gAð�ðtÞÞ

gBð�ðtÞÞ
½ fAð�ðtÞÞ � fBð�ðtÞÞ�

d�ðtÞ

dt

����
�ðtÞ¼A

:

ð28Þ

Equations (27) and (28) can be rewritten as

HAð�ðtÞÞ ¼ �KBð�ðtÞÞGð�ðtÞÞQBð�ðtÞÞ ð29Þ

HBð�ðtÞÞ ¼ KAð�ðtÞÞGð�ðtÞÞQAð�ðtÞÞ, ð30Þ

where KAð�ðtÞÞ ¼ CAðtÞ
gAð�ðtÞÞ
gBð�ðtÞÞ

, KBð�ðtÞÞ ¼ CBðtÞ
gBð�ðtÞÞ
gAð�ðtÞÞ

and

Gð�Þ ¼ fAð�Þ � fBð�Þ: ð31Þ

Remark 2: In (29) and (30), both KA(�) and KB(�) are
positive, and G(�) is the common part. It can be readily
shown that

. If the signs of QA(�) and QB(�) are the same,
then the signs of HA(�) and HB(�) are
opposite.

. If the signs of QA(�) and QB(�) are opposite,
then the signs of HA(�) and HB(�) are the
same.

The geometrical meaning of the signs of QA(�) and
QB(�) is the trajectory direction. A positive QA(�)
implies a counter clockwise trajectory of �A in x�y
coordinates.

Since the interval of interest of � is ½� �
2 ,

�
2Þ, all the

functions of � could be transformed to the functions of
k by denoting k¼ tan �. Straightforward algebraic
manipulation yields

HAðkÞ ¼ KBðkÞ
NðkÞ

DBðkÞ
ð32Þ

HBðkÞ ¼ �KAðkÞ
NðkÞ

DAðkÞ
ð33Þ

QAðkÞ ¼ �
1

k2 þ 1
DAðkÞ ð34Þ

QBðkÞ ¼ �
1

k2 þ 1
DBðkÞ, ð35Þ

Figure 2. The variation of hA under switching.
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where

DAðkÞ ¼ a12k
2 þ ða11 � a22Þk� a21 ð36Þ

DBðkÞ ¼ b12k
2 þ ðb11 � b22Þk� b21 ð37Þ

and

NðkÞ ¼ p2k
2 þ p1kþ p0, ð38Þ

where p2¼ a12b22� a22b12, p1¼ a12b21þ a11b22�
a21b12� a22b11 and p0¼ a11b21� a21b11.

Denote the two distinct real roots of N(k), if exist,
by k1 and k2, and assume k25k1. Notice that the signs
of Equations (32)–(35) depend on the signs of DA(k),
DB(k) and N(k).

Lemma 2: If A and B do not share any real
eigenvector, which was guaranteed by Assumption 2,
then the real roots of N(k) do not overlap with the real
roots of DA(k) or DB(k) for non-singular A and B.

The proof of Lemma 2 is presented in Appendix B.

Definition 4: A region of k is a continuous interval
where the signs of (32)–(35) are preserved for all k in
this interval.

Remark 3: The boundaries of the regions of k, if
exist, are the lines whose angles satisfy DA(k)¼ 0,
DB(k)¼ 0 or N(k)¼ 0.

. If DA(k)¼ 0, then QA(�)¼ 0, the lines are the
real eigenvectors of A.

. If DB(k)¼ 0, then QB(�)¼ 0, the lines are the
real eigenvectors of B.

. Since the real eigenvectors are only located on
the boundaries, the solution expressions of
(21) and (23) are always valid inside the
regions of k.

. If N(k)¼ 0, they are the lines where the
trajectories of the two subsystems are tangent
to each other. It can be readily shown that
N(k)¼ 0 is equivalent to the collinear condi-
tion det(Ax, Bx)¼ 0, where k represents the
slope of vector x.

. If N(k)¼ (k� km)
2, in the two regions that

share the boundary k¼ km, the signs of (32)–
(35) do not change. Hence the BCSS in these
two regions are the same. In addition, trajec-
tories of the two subsystems are tangent to each
other on k¼ km and both of them can cross this
boundary, then we can choose any subsystem
as the BCSS on the vector k¼ km. It follows
that the BCSS and the stabilisability of
the switched system will not be affected by
ignoring k¼ km.

. With reference to Equations (32)–(35), when
trajectories cross the boundary k1 or k2, the
trajectory directions remain unchanged while

the signs of HA(k) and HB(k) change

simultaneously.

These boundaries divide the x�y plane to several

conic sectors, i.e. regions of k. Now we proceed to

establish criteria to determine the BCSS for every �, or
k equivalently, based on the signs of HA and HB.

3.1 Both HA and HB are negative

Lemma 3: The switched system (1) is RAS if there is a

region of k, [kl, ku], where both HA(k) and HB(k) are

negative.

With reference to Figure 3, a stable trajectory can be
easily constructed by switching inside this region. The

proof of Lemma 3 is shown in Appendix C.

3.2 HA is positive and HB is negative

The BCSS is �A. In this case, the trajectories of two

subsystems have the same direction based on

Remark 2. With reference to Figure 4, consider an

initial state with an angle �0 at t0. Let rB(�) be the

trajectory along �B and let rA(�) be the trajectory along
�A. Comparing the magnitudes of the trajectories
along different subsystems, we have

rBð�Þ � rAð�Þ ¼ hAð�Þ gAð�Þ � CAgAð�Þ

¼ gAð�Þ

Z t

t0

HAð�ðtÞÞdt4 0, ð39Þ

which shows that the trajectory of �A always has a

smaller magnitude than the corresponding one of �B

for all � in this region.

Figure 3. The region where both HA and HB are negative.
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3.3 HA is negative and HB is positive

Similarly, the BCSS is �B.

3.4 Both HA and HB are positive

First, we will show that the switched system cannot be

stabilised in this region if its trajectory does not move

out. It follows from Assumption 2 that at least one of

gA(�) and gB(�) is lower-bounded for any given �. Since
both HA and HB are positive, we have hA(t)� hA(t0)

and hB(t)� hB(t0). With reference to (21) and (23), the

magnitude of trajectories r is lower-bounded in this

region. Hence the stabilisability of the switched system

is determined by other regions.
Next we will discuss the scenarios when the

trajectory may move out.

(1) If only the trajectory of one subsystem, say �A,

can go out of this region, then the BCSS in this

region is �A. Let r�� be the trajectory along �A

and let r� be the trajectory under any other

switching signal. Comparing the magnitudes of

the trajectories under different switching on the

boundary (�¼ �bn) where the trajectories move

out, it can be shown that any switching other

than �A in this region will make the switched

system more unstable since

r�� ð�bnÞ ¼ hAðt0Þ gAð�bnÞ5 r� ¼ hAðtÞ gAð�bnÞ: ð40Þ

(2) If the trajectories of both subsystems can go

out and neither can come back, then no matter

which subsystem is chosen, the trajectory will

leave this region and the stabilisability of the

switched system is determined by other regions.

(3) If the trajectories of both subsystems can go
out and at least one of them can come back,
then at least one of the boundaries of this
region is k1 or k2, the root of N(k). It was
mentioned in Remark 3 that HA(k) and HB(k)
change their signs simultaneously when trajec-
tories cross the boundary k1 or k2, then there
must exist a stabilisable region, where both HA

and HB are negative, next to this region.
Therefore, the switched system (1) is RAS
based on Lemma 3.

3.5 One of HA and HB is zero

If one of HA(k) and HB(k) is zero, it implies N(k)¼ 0,
then both of them are zero at the line k.

(1) If the trajectories of the subsystems cross the
line with the same direction, we can choose
either subsystem as the BCSS since the
trajectories are tangent to each other on
this line.

(2) If the trajectories of the subsystems cross the
line with opposite direction, it follows from
Remark 3 that there exists a stabilisable region
near the line where N(k)¼ 0. Hence the
switched system is RAS from Lemma 3.

3.6 On real eigenvectors

It can be readily shown that the BCSS is �A on the
eigenvectors of B, and vice versa.

3.7 Procedure

In this section, we have characterised the BCSS based
on the signs of HA(k), HB(k), QA(k) and QB(k). Then
one is able to determine the stabilisability of switched
systems (1) by the following procedure.

(1) Determine all the boundaries: the real eigen-
vectors of two subsystems and the distinct real
roots of N(k). All the boundaries are known
since all the entries of the subsystems are
known.

(2) Determine the signs ofHA(k),HB(k), QA(k) and
QB(k) for every region of k.

(3) Determine the BCSS for every region based on
(2) and then obtain the BCSS for the whole
phase plane.

(4) Determine the stabilisability of the switched
system based on the BCSS for the whole phase
plane.

Figure 4. The region where HA is negative and HB is
positive.
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4. A necessary and sufficient condition for stabilisa-

bility of switched system (2)

In this section, we are going to apply the best case
analysis to derive an easily verifiable, necessary and
sufficient condition for the switching stabilisability of
switched systems (2). In order to reduce the degrees of
freedom, standard forms and standard transformation
matrices for different types of second-order matrices
are defined and some assumptions are made.

4.1 Standard forms

To reduce the degree of freedom, the standard forms
for different types of second-order matrices are defined
as follows.

J1¼
�1 0

0 �2

� �
, J2¼

� 0

�1 �

� �
, J3¼

� �!

! �

� �
: ð41Þ

Since the switched system (2) is considered, we have

�2 � �1 4 0; �4 0; �4 0, !5 0: ð42Þ

4.2 Standard transformation matrices

It is assumed that one of the subsystems is in its
standard form, i.e. Ai¼ Ji, then the other one can be
expressed as Bj ¼ PjJjP

�1
j with i� j, where Jj is the

standard form of Bj and Pj is the transformation
matrix, which are defined for different types of Bj as
follows.

P1 ¼
1 1
� 	

� �
, P2 ¼

0 1
	 �

� �
, P3 ¼

0 1
	 �

� �
: ð43Þ

For any given Bj with its standard form Jj, Pj can be
derived from the eigenvectors of Bj.

(1) � and 	 in P1 can be obtained by calculating the
real eigenvectors of B1. Make sure that the
eigenvector [1, �]T corresponds to �1.

(2) � in P2 can be derived by calculating the
eigenvector of B2. And then 	 can be uniquely
determined by the equation B2 ¼ P2J2P

�1
2 .

(3) � and 	 in P3 can be derived from the
eigenvector of B3. If the eigenvector corre-
sponding to the eigenvalue �� j!, is

v ¼
p11 þ p12i
p21 þ p22i

� �
, then P3 ¼

p11 p12
p21 p22

� �
. It is

always possible to ensure p11¼ 0 and p12¼ 1 by
multiplying v with a factor of
ð p11 � p12iÞi=ð p

2
11 þ p212Þ.

4.3 Assumptions

In order to further reduce the degrees of freedom such

that the final result can be presented in a compact

form, certain assumptions have to be made concerning

the various parameters. These are listed below.

Assumption 3:

(I) if Sij¼S11, 	50;
(II) if Sij¼S12, �50;
(III) if Sij¼S13, k250, where k2 is the smaller root

of N(k);
(IV) if Sij¼S33, p2 6¼ 0, where p2 is the leading

coefficient of N(k);
(V) if Sij¼S33, p250 (if N(k) has two distinct real

roots).

Please note that those assumptions do not impose

any constraint on the subsystems Ai and Bj as shown

by following lemma.

Lemma 4: Any given switched linear system (2) sub-

jected to Assumptions 1 and 2 can be transformed to

satisfy Assumption 3 by similarity transformations.

The proof of Lemma 4 is provided in Appendix D.

4.4 A necessary and sufficient stabilisability
condition

Now we are ready to state the principal result of this

article as follows.

Theorem 1: The switched system (2), subject to

Assumptions 1–3, is RAS if and only if there exist two

independent real-valued vectors w1, w2, satisfying the

collinear condition

detð½Aiw Bjw�Þ ¼ 0, ð44Þ

and the slopes of w1 and w2, denoted as k1 and k2 with

k25k1, satisfy the following inequality:

L5 k2 5 k1 5M if detðPj Þ5 0

kexpðBjTBÞ expðAiTAÞw1k2 5 kw1k2 if detðPj Þ4 0,

�
ð45Þ

where M and L correspond to the slopes of the non-

asymptotes of Ai and Bj respectively such that

M ¼

0, i ¼ 1

þ1, i ¼ 2

þ1, i ¼ 3

8><
>: , L ¼

�, j ¼ 1

�, j ¼ 2

�1 j ¼ 3

8><
>: , ð46Þ

International Journal of Control 701

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
a
t
i
o
n
a
l
 
U
n
i
v
e
r
s
i
t
y
 
O
f
 
S
i
n
g
a
p
o
r
e
]
 
A
t
:
 
1
0
:
3
0
 
3
0
 
J
u
l
y
 
2
0
1
0



and

TA ¼

Z �1

�2

1

QAð�Þ
d�

¼

Z �1

�2

1

a21 cos2 �� a12 sin
2 �þ ða22� a11Þ sin � cos �

d�

ð47Þ

TB¼

Z �2þ�

�1

1

QBð�Þ
d�

¼

Z �2þ�

�1

1

b21 cos2 ��b12 sin
2 �þðb22�b11Þsin�cos�

d�,

ð48Þ

where �1¼ tan�1 k1, �2¼ tan�1 k2.

Theorem 1 shows that the existence of two
independent vectors w1, w2, along which the trajec-
tories of the two subsystems are collinear, is a
necessary condition for the switched system (2) to be
stabilisable.

Theorem 1 also indicates that there are two classes
of switched systems (2) categorised by the sign of
det(Pj), which implies the relative trajectory direction
of two subsystems in certain regions. For example,
when both Ai and Bj are with complex eigenvalues, the
positive/negative det(Pj) implies that the trajectory
directions of the two subsystems are the same/opposite
for the whole phase plane.

The possible stabilisation mechanisms correspond-
ing to the two classes mentioned above are totally
different as detailed below.

Class I (det(Pj)50): stable chattering (sliding or
sliding-like motion), i.e. when system trajectories can
be driven into a conic region where both HA(k) and
HB(k) are negative, there exists a switching sequence to
stabilise the system inside this region. In Class I, the
switched systems are only RAS in the region (L, M),
but not GAS unless one of the subsystem is with spiral,
which can bring any initial state into the stabilisable
region.

Class II (det(Pj)40): stable spiralling, i.e. when the
system trajectory is a spiral around the origin and there
exists a switching action to make the magnitude
decrease after one or half circle. In Class II, if the
condition (45) is satisfied, the switched systems are not
only RAS, but also GAS.

Remark 4: The existence of two distinct stabilisation
mechanisms was also discussed by Xu and Antsaklis
(2000). However, no simple algebraic index has been
reported in the literature to classify given switched
system (2) into those two classes. It was shown above

that this can be readily done by checking the sign

of det(Pj).

The condition in Theorem 1 is easily verifiable, by

the following procedure.

(1) Calculate the eigenvalues and the eigen-

vectors of two subsystems, and check the

following:

(a) If one of the subsystems is asymptotically

stable, then the switched system (2) is RAS

(GAS).
(b) If either Assumption 1 or 2 is violated, the

switched system (2) is not RAS.

(2) Determine Sij with i� j, where the subscripts i

and j denote the types of Ai and Bj respectively.
(3) Check whether Ai is in its standard form Ji.

Do a similarity transformation for the two

subsystems simultaneously to guarantee Ai¼ Ji
if necessary.

(4) Calculate Pj, k1, k2 and check Assumption 3.

(a) If Assumption 3 is satisfied, go to step 5.
(b) Otherwise, do a similarity transformation,

as stated previously, for two subsystems

simultaneously such that Assumption 3 is

satisfied. Recalculate Pj, k1 and k2.

(5) If the real roots k1 6¼ k2, go to the next step,

otherwise the switched system is not RAS.
(6) Calculate det(Pj).

(a) If det(Pj)50, determine the values of L

and M with reference to (46), and check

the first inequality of Theorem 1.
(b) If det(Pj)40, calculate the values of TA and

TB using Equations (47) and (48), which are

easily integrable by changing variable, and

check the second inequality of Theorem 1.

Theorem 1 is proved in the following fashion. For

every possible combination of the subsystems Sij, it will

be shown that if the condition (45) is satisfied, then

there exists a switching signal to stabilise the switched

system (2) for initial states in some regions of k, which

constitutes the proof for the sufficiency. It will also be

demonstrated that for all the cases when this condition

is violated, the switched system cannot be stabilised for

all non-zero initial states by all possible switching,

which would establish the necessity.
We prove Theorem 1 for the case Sij¼S11 in the

following as an example to show the main idea and

process of the proof of Theorem 1. The rest of the

proof is presented in Appendix E.
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Proof: In the case of Sij¼S11,

A1 ¼
�1a 0

0 �2a

� �
, B1 ¼ P2J2P

�1
2

¼
1

	� �

	�1b � ��2b �2b � �1b

�	ð�1b � �2bÞ 	�2b � ��1b

� �
: ð49Þ

Denote

�1a ¼ kA�2a, �1b ¼ kB�2b, ð50Þ

we have 05kA, kB51,2 � 6¼ 0 by Assumption 2 and

	50 by Assumption 3.1. Substituting A1 and B1 into

(32)–(38), it follows that

NðkÞ ¼
�2a�2bðkA � 1Þ

	� �
�NðkÞ, ð51Þ

where

�NðkÞ ¼ k2þ
ðkA�kBÞ	þð1�kAkBÞ�

kB� 1
kþ�	kA ð52Þ

is a monic polynomial with the same roots as N(k) and

HAðkÞ ¼ KBðkÞ�2b
� �NðkÞ

ð�� 	Þk
ð53Þ

HBðkÞ ¼ KAðkÞ
�2að1� kAÞ �NðkÞ

ð1� kBÞðk� �Þðk� 	Þ
ð54Þ

QAðkÞ ¼ �
1

1þ k2
�2aðkA � 1Þk ð55Þ

QBðkÞ ¼
�2bð1� kBÞ

1þ k2
ðk� �Þðk� 	Þ

�� 	
: ð56Þ

It can be readily shown that

sgnðHAðkÞÞ ¼ �sgnð�� 	Þsgnð �NðkÞÞsgnðkÞ ð57Þ

sgnðHBðkÞÞ ¼ sgnð �NðkÞÞsgnðk� �Þsgnðk� 	Þ ð58Þ

sgnðQAðkÞÞ ¼ sgnðkÞ ð59Þ

sgnðQBðkÞÞ ¼ sgnð�� 	Þsgnðk� �Þsgnðk� 	Þ: ð60Þ

In order to determine the signs of Equations (57)–

(60) in every region of k, the relative position of the

boundaries including two eigenvectors of A1 which are

k¼ 0 and k¼1 in S11, two eigenvectors of B1 which

are k¼ � and k¼ 	, the two distinct real roots of N(k)

which were defined as k1 and k2, are required. We go

through all possible sequences of these boundaries with

respect to the following three exclusive and exhaustive

cases. Note that the root condition of �NðkÞ, or N(k), is

essentially the same as the one for det(Aw,Bw) by

denoting k as the slope of w. For simplicity, we use the

root condition of �NðkÞ in the following analysis.

Case 1: �NðkÞ does not have two distinct real roots.

There are three possibilities: (1) two complex roots;
(2) two identical real roots; (3) one root, which are
discussed as follows.

(1.1) �NðkÞ has two complex roots. Since the complex
roots of N(k), denoted as c1 and c2, are conjugate,
Equation (61) below should be positive for any �.

ð�� c1Þð�� c2Þ ¼
ð1� kAÞkB�ð�� 	Þ

kB � 1
: ð61Þ

As a result, the only possible sequence of these
boundaries is 	5�50. Then the signs of (57)–(60)
could be determined for every region of k, as shown in
Figure 5.

Figure 5 is the main tool for us to determine the
stability of switched systems (2), as well as switched
systems (1). It shows the signs of HA(k), HB(k), QA(k)
and QB(k) versus k ranged from �1 to þ1, which
corresponds to � 2 ½� �

2 ,
�
2Þ. The dashed vertical lines

are the boundaries of the regions of k. The horizontal
lines represent the signs of HA(k) (solid) and HB(k)
(dashed) while the arrows represent the signs of QA(k)
and QB(k) in different regions. IfHA(k) is positive, then
the solid line is above the horizontal axis. If QA(k) is
positive, the arrow on the dashed line points to the
right (counter clockwise in x�y plane).

With reference to Figure 5, regions I and III are
unstabilisable since both HA(k) and HB(k) are positive
in these regions. Region I is a special region, where
none of the trajectories can go out. Consider all
possible initial states in different regions as follows.

. If the initial state is in region I, it cannot go
out of this region.

. If the initial state is in region II or IV, it will be
brought into region I by the BCSS, which is
�A in region II (HA is positive and HB is
negative) and �B in region IV.

. If the initial state is in region III, it must be
brought out because region III is unstabilisa-
ble. Then the trajectory will go to region II or
region IV, and goes to region I eventually.

Therefore, when �NðkÞ has two complex roots, the
switched system (2) is not RAS.

(1.2) �NðkÞ has two identical real roots. Based on
Remark 3, the best case analysis for this case is similar
to the one for Figure 5 regardless of the position of the
multiple roots. Since this is true for all Sij, the analysis
for the case that �NðkÞ has two identical real roots will
be omitted in all other cases.

(1.3) �NðkÞ has only one root. In this case, the leading
coefficient of N(k), p2¼ a12b22� a22b12¼ 0 from (38).
With reference to (49), we have a12¼ 0 and a22 6¼ 0.

International Journal of Control 703
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So p2¼ 0 results in b12¼ 0, which implies that B1

shares a real eigenvector (the y axis) with A1, which
violates Assumption 2. Therefore, this case cannot
happen for S11. It can be readily shown that this is true
for all other cases of S1j and S2j. In S33, p2¼ 0 was
excluded by Assumption 3.4. Hence, we will omit the
case that N(k) has only one root in the rest of the proof
of Theorem 1.

Case 2: �NðkÞ has two distinct real roots and
det(P1)50

�4	, with reference to (52) and (61), there are
totally four possibilities:

(2.1) 	5�5k25k150
With reference to Figure 6, if the initial state is in

the region of k2 (�1,�] or k2 [0,1), the trajectory
will be driven into the unstabilisable region I and
cannot move out no matter which subsystem is chosen.
However, if the initial state is in (�, 0), the trajectory
can be brought into region IV, where both HA(k) and
HB(k) are negative, then the system can be stabilised by
switching inside the stabilisable region IV. Therefore,
in this case, the switched system is RAS.
The stabilisable region is (�, 0).

(2.2) 	5k25k15�50
The switched system is not RAS with reference to
Figure 7.

(2.3) 	5�505k25k1
The switched system is not RAS with reference to
Figure 8.

(2.4) 	5k2505�5k1
The switched system is not RAS with reference to
Figure 9.

Case 3: �NðkÞ has two distinct real roots and
det(P1)40.

�5	, it follows from (52) and (61) that
k25�5	5k150.

With reference to Figure 10, it is straightforward
that the BCSS is �B in regions I and V because HA is
negative andHB are positive. Similarly, the BCSS is �A

in regions II and IV because HA is positive and HB are
negative. In region III, both HA and HB are positive,
but �A is the only subsystem whose trajectory can go
out of region III because the boundaries of region III
are � and 	 that correspond to the eigenvectors of B.
Similarly, the BCSS is �B in region VI. On k1 and k2,
without loss of generality, we can choose �A and �B

Figure 5. S11: N(k) has two complex real roots, the switched system is not RAS.

Figure 6. S11: det(P1)50, 	5�5k25k150, the switched system is RAS.
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respectively as the BCSS since both HA and HB are

zero. It is concluded that the BCSS in the whole

interval of k is

� ¼ A k2 5 k � k1,
� ¼ B otherwise.

n
ð62Þ

In this case, the trajectory under the BCSS rotates
around the origin clockwise. The simplest way to
determine stabilisability of the system is to follow a
trajectory under the BCSS originating from a line l
until it returns to l again and evaluate its expansion or
contraction in the radial direction. Without loss of

Figure 10. S11: det(P1)40, the trajectory under the BCSS rotates around the origin.

Figure 8. S11: det(P1)50, 	5�505k25k1, the switched system is unstabilisable.

Figure 9. S11: det(P1)50, 	5k2505�5k1, the switched system is unstabilisable.

Figure 7. S11: det(P1)50, 	5k25k15�50, the switched system is unstabilisable.
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generality, let w1¼ [1, k1], the system is GAS if and
only if kexp(B1TB)exp(A1TA)w1k25kw1k2. TA and TB

are the time on �A and �B respectively, which could be
calculated by

TA ¼

Z �1

�2

dt

d�

����
�¼A

d� ¼

Z �1

�2

1

QAð�Þ
d� ð63Þ

TB ¼

Z �2þ�

�1

dt

d�

����
�¼B

d� ¼

Z �2þ�

�1

1

QBð�Þ
d�, ð64Þ

where �1¼ tan�1 k1 and �2¼ tan�1 k2.

Example 1:

A ¼
1 0

0 3

� �
, B ¼

�9 5

�20 11

� �
: ð65Þ

(1) Simple check shows that A has two distinct
real eigenvalues: �1a¼ 1 and �2a¼ 3 with cor-
responding eigenvectors: [1, 0]T and [0, 1]T,
respectively. B has two multiple eigenvalues
�b¼ 1 with a single eigenvector [1, 2]T, which
is undiagonalisable. It is the case S12. And
it follows that Assumptions 1 and 2 are
satisfied.

(2) A is already in its standard form J1.

(3) P2 ¼
0 1
�0:2 2

� �
is derived from B ¼ P2J2P

�1
2 .

It follows that �¼ 2, which violates
Assumption 3.2. Therefore, we need to trans-
form A and B simultaneously. By denoting
�x1 ¼ �x1, we obtain a new switched system

�A ¼
1 0
0 3

� �
, �B ¼

�9 �5
20 11

� �
, ð66Þ

which has the same stabilisability property as
the switched system (65). Recalculate

�P2 ¼
0 1
0:2 �2

� �
, where �¼�1 satisfies

Assumption 3.2. And we have k1¼�0.7460,
k2¼�1.7873.

(4) The first inequality of Theorem 1 should be
checked because detð �P2Þ ¼ �0:25 0. With ref-
erence to (46), we have L¼ �¼�2 and M¼ 0
for S12, hence the inequality L5k25k15M is
satisfied.

It can be concluded that the switched system (66),
or equivalently the switched system (65), is RAS.
A typical stabilising trajectory of the switched
system (66) is shown in Figure 11.

Note that this example corresponds to a class of
switched systems, which was not considered by Xu and
Antsaklis (2000), Zhang et al. (2005) or Bacciotti and
Ceragioli (2006).

5. Extensions

5.1 Stabilisability conditions for the switched
systems (3)

For the switched systems (3), the standard forms and

standard transformation matrices are the same as those

for the switched systems (2) in (41) and (43) except

Equation (42) is revised as

�2 � �1 � 0; � � 0; � � 0,!5 0: ð67Þ

Theorem 2: The switched system (3), subject to

Assumptions 1–3, is RAS if and only if there exist two

independent real-valued vectors w1 and w2, satisfying the

collinear condition

detð½Aiw Bjw�Þ ¼ 0, ð68Þ

and the slopes of w1 and w2, denoted as k1 and k2 with

k25k1, satisfy the following inequality:

L � k2 5 k1 �M if detðPj Þ5 0

expðBjTBÞ expðAiTAÞw1

�� ��
2
5 w1k k2 if detðPj Þ4 0,

(

ð69Þ

where M, L, TA and TB are the same as those defined in

Theorem 1.

Theorem 2 is an extension of Theorem 1 by

including the case when the eigenvalue of the

subsystems has zero real part. The proof for

Theorem 2 is very similar to that of Theorem 1

by considering the special cases when kA¼ 0, kB¼ 0

(50) or �A¼ 0 (42), hence is omitted in this article.

The reader is referred to Huang (2008) for the

detailed proof.

0 1 2 3 4 5 6 7 8 9 10
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

x1

x 2

ΣA

ΣB

k1

k2

Figure 11. A typical stabilising trajectory of the switched
system (66).
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5.2 A stabilisability condition for the switched
system (4)

In this subsection, we are going to analyse the
stabilisability of the switched system (4), where at
least one of the subsystems has a negative eigenvalue.

It is worth noting that the trajectory staying on the
eigenvector with a negative eigenvalue will not be
considered as a valid stabilising trajectory, because it is
not possible to bring the trajectory to this eigenvector
exactly in practice. Furthermore a small disturbance
will divert the trajectory from the eigenvector even if
the initial state is on the eigenvector.

Theorem 3: The switched system (4), subject to
Assumptions 1 and 2, is always RAS.

The proof for Theorem 3 is very similar to that of
Theorem 1 by analysing the cases when kA and/or kB
are negative, hence is omitted in this article. The reader
is referred to Huang (2008) for the detailed proof.

Remark 5: The switched system (4) which is RAS can
also be said to be GAS

. if Sij¼S13. In this case, there exists a
subsystem along which the trajectories can
be driven into the stabilisable region regard-
less of the initial state.

. if the switched system (4) subjected to
Assumptions 1–3 satisfies the condition
det(Pj)40. It is the spiralling case. There
always exists a trajectory that can rotate
around the origin regardless of the type of
subsystems.

6. Discussion

In this section, we discuss the connections between the
stabilisability conditions in this article and the ones in
the literature. We refer in particular to the articles by
Xu and Antsaklis (2000), Boscain (2002), Bacciotti and
Ceragioli (2006) and Balde and Boscain (2008).

In the article by Xu and Antsaklis (2000), necessary
and sufficient stabilisability conditions for the switched
systems (1) are firstly found in following cases:

(1) both A and B are unstable nodes;
(2) both A and B are unstable spirals;
(3) both A and B are saddle points.

All of above cases are considered in Theorems 1 and 3.
In the article by Bacciotti and Ceragioli (2006), the

authors analyse switched systems in the cases when A
has complex conjugates eigenvalues with null real
part and any B (stable/unstable node, spiral or
saddle), and derive necessary and sufficient conditions
for the switching stabilisability. These conditions are

mathematically elegant and are easy to verify. In our

article, these cases are included in Theorem 2 (when B is

node or spiral) and Theorem 3 (when B is saddle). The

equivalence between these conditions can be proved by

following the proofs of Theorem 2 forSij¼Si3, i¼ 1, 2, 3

and considering the special case when the real part of the

complex eigenvalue is zero. Due to the limitation of

the space, we take Sij¼S33 as an example to show the

equivalence.
With reference to Appendix E5, we assume

A ¼
0 1

�1 0

� �
, B ¼

0 1

	 �

� �
�b �!b

!b �b

� �
0 1

	 �

� ��1

¼
!b

	

	
 � � 1

�ð�2 þ 	2Þ 	
 þ �

� �
,

where !b50 and 
 ¼ �b

!b
5 0. With reference to

Theorem 1 in the paper by Bacciotti and Ceragioli

(2006), where !a is chosen to be �1 (it is feasible by

scaling time t or do linear transformation x1¼�x1),

the switched system is stabilisable if and only if there

exists x2 IR2 such that det(Ax :Bx)50. By substituting

A and B and denoting x¼ [1, k]T, the stabilisability

condition by Bacciotti and Ceragioli (2006) can be

written as:

detðAx : BxÞ ¼
!b

	
fð	
 þ �Þk2

þ ½1� ð�2 þ 	2Þ�kþ ð	
 � �Þg5 0:

ð70Þ

Case (1) det(Ax :Bx) does not have two distinct real

roots. From Theorem 2, the switched system is not

stabilisable. To prove the equivalence, we need to show

det(Ax :Bx) is non-negative for all x, or equivalently,

the leading coefficient of (70), denoted as p2, is

positive. It follows from det(Ax :Bx) does not have

two distinct real roots that j	
j4j�j. If 	40, then

	
þ �50, we have p2 ¼
!b

	 ð	
 þ �Þ4 0. Similarly, if

	50, then 	
þ�40, we also have p240. So the

equivalence is proved for this case.

Case (2) det(Ax :Bx) has two distinct real roots and

	40. In this case, Equation (70) is always true

regardless of the sign of p2. As a result, the switched

system is stabilisable. The similar result can be

obtained from Theorem 2 by checking the first

inequality of (69), which is always satisfied since

L¼�1 and M¼þ1.

Case (3) det(Ax : Bx) has two distinct real roots and

	50. In this case, Equation (70) is always true

regardless of the sign of p2. As a result, the switched

system is stabilisable. The similar result can be

obtained from Theorem 2 by checking the second
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inequality of (69), which is always satisfied due to the
property of A.

In this article, we relax the constraint that A has
complex eigenvalues with null real part, and extend the
stabilisability conditions proposed in Bacciotti and
Ceragioli (2006) to more general combinations of
subsystems Ai and Bj.

In the articles by Boscain (2002), Balde and Boscain
(2008), the authors analyse the stability of switched
systems with two asymptotically stable planar LTI
subsystems under arbitrary switching and derive nec-
essary and sufficient conditions by finding the worst
case switching signals. In Theorem 1, we deal with the
regional asymptotical stabilisability of switched sys-
tems (2) and derive necessary and sufficient stabilisa-
bility condition by finding the BCSS. There are some
similarities on the approaches applied in the papers by
Balde and Boscain and our article such as analysing
worst/best switching signal in different conic sections,
finding the vectors where the trajectories of two
subsystems are parallel, using some parameters to
denote the relative trajectory directions of two
subsystems and so on. By reversing time, Theorem 1
is essentially equivalent to the conditions in Boscain
(2002), Balde and Boscain (2008), although they are
formulated in different forms. Simply speaking, if a
switched system (2) with a pair of Ai and Bj is not RAS,
then the corresponding switched system with �Ai and
�Bj is stable under arbitrary switching. Similarly, if a
switched system (2) with Ai and Bj is RAS, then the
corresponding switched system with �Ai and �Bj is
not stable under arbitrary switching. The equivalence is
shown by the following example:

Example 2:

A ¼
�1 0
0 �6

� �
, B ¼

12 14
�21 �23

� �
: ð71Þ

With reference to Theorem 2.3 in the paper by
Boscain (2002), we have �A ¼ i 75, �B ¼ i 117 , K¼ 5,
D¼ 6.4294, Kþ �A�B¼ 2.840. So the switched
system (71) is not stable under arbitrary switching
because it belongs to Case (RR.2.1). By reversing time,
we have

�A ¼
1 0
0 6

� �
, � B ¼

�12 �14
21 23

� �
: ð72Þ

With reference to Theorem 1 in this article, we have
k1¼�0.3013, k2¼�0.8296, det(P2)¼�0.550, M¼ 0,
L¼�1.5. It follows from L5k25k15M that the
switched system (72) is RAS.

It has to be pointed out that the study on the
regional asymptotical stabilisability in this article is not
trivial although there exists an equivalence between

Theorem 1 and the conditions proposed in the papers
by Balde and Boscain by reversing time. The reasons
are listed below:

(1) When the stabilisability problem is considered,
we need to know (i) when a switched system is
GAS and (ii) where the stabilisable region is if a
switched system is only RAS. In example 2, the
initial state has to be inside the region of k
bounded by (L,M) such that its trajectory can
go into the stabilisable region (k2, k1), where
HA(k) and HB(k) are negative. The situation is
different for the problem of the stability under
arbitrary switching: if there exists an unstable
region, then the trajectory can be driven into
this region regardless of its initial state.

(2) The formulation of Theorem 1 is different with
the conditions in Boscain and Balde–Boscain’s
papers: the latter are mathematically elegant by
presenting the results for difference cases sep-
arately while the former is given in a compact
form for all of combinations of dynamics of
subsystems by assumptions, which is able to
provide more geometrical insights.

(3) In Theorems 2 and 3, the cases when sub-
systems have eigenvalues with null real part or
a negative eigenvalue are considered. No cor-
responding result is found in the papers by
Boscain (2002) and Balde and Boscain (2008).

7. Conclusion

This article deals with the long-standing open problem
of deriving easily verifiable, necessary and sufficient
conditions for the regional asymptotical stabilisability
of switched system with a pair of planar LTI unstable
systems. The conditions derived in this article are the
extensions to the one proposed by Xu and Antsaklis
(2000), and are demonstrated to be (i) more generic in
the sense that all the possible combinations of sub-
system dynamics (node, saddle point and focus) and
marginally unstable subsystems were considered; and
(ii) easily verifiable since the checking algorithm, shown
in Section 4.4, is easy to follow and all the calculations
can be done by hand and (iii) in a compact formwhich is
possible to provide more geometric insights.

In contrast to the Lyapunov function approach
commonly adopted by many researchers, a geometric
approach was utilised in this article. In order to
facilitate the best case analysis, a tool of using the
variations of the constants of the integration of
subsystems, namely HA(k) and HB(k), as the indictors
of the ‘goodness’ or ‘badness’ of the trajectory, was
developed in this article. With this powerful tool, the
best case trajectory can be easily identified, which
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showed that the existence of two independent vectors,
where the trajectories of two subsystems are collinear,
is a necessary condition for the switched systems (3) to
be stabilisable, and these two vectors play a key role on
switching strategies. It was also found that the sign of
det(Pj) (43), associating with the relative trajectory
directions of the two subsystems in certain regions, can
be used to classify any given switched system (3) into
two classes, which correspond to the two possible
stabilisation mechanisms: stable chattering and stable
spiralling.

It is also believed that the idea of using HA(k) and
HB(k) to characterise the best case switching and the
proposed geometrical insights, i.e. the existence of
collinear vectors, relative trajectory directions, can be
extended to cope with third-order linear systems and
some special classes of nonlinear systems.
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Notes

1. If �e2 (�
�, �), the Cauchy principal value of the improper

integral is introduced as P:V:
R �
�� f ð�Þd� ¼

lim"!0þ ð
R �e�"
�� f ð�Þd� þ

R �
�eþ"

f ð�Þd�Þ, which is also

bounded because lim
"!0þ

R �eþ"
�e�"

f ð�Þd� ¼ 0.

2. If kA¼ 1, any vector in the phase plane is the eigenvector
of A, which contradicts Assumption 2 since B have two
real eigenvectors.

3. Note that 	¼ 0 in S11 and �¼ 0 in S12 have been
excluded by Assumption 2.

References

Arapostathis, A., and Broucke, M.E. (2007), ‘Stability and

Controllability of Planar Conewise Linear Systems’,

Systems Control and Letters, 56, 150–158.
Bacciotti, A., and Ceragioli, F. (2006), ‘Closed Loop

Stabilization of Planar Bilinear Switched Systems’,

International Journal of Control, 79, 14–23.

Balde, M., and Boscain, U. (2008), ‘Stability of Planar

Switched Systems: The Nondiagonalizable Case’,

Communication on Pure and Applied Analysis, 7, 1–21.
Boscain, U. (2002), ‘Stability of Planar Switched Systems:

The Linear Single Input Case’, SIAM Journal on Control

and Optimization, 41, 89–112.

Branicky, M.S. (1998), ‘Multiple Lyapunov Functions and

other Analysis Tools for Switched and Hybrid Systems’,

IEEE Transactions on Automatic Control, 43, 751–760.
Cheng, D.Z. (2004), ‘Stabilization of Planar Switched

Systems’, Systems and Control Letters, 51, 79–88.

Cheng, D., Guo, L., Lin, Y., and Wang, Y. (2005),
‘Stabilization of Switched Linear Systems’, IEEE

Transactions on Automatic Control, 50, 661–666.
Cuzzola, F.A., andMorari,M. (2002), ‘An LMIApproach for
H1Analysis and Control of Discrete-time Piecewise Affine

Systems’, International Journal of Control, 75, 1293–1301.
Daafouz, J., Riedinger, R., and Iung, C. (2002), ‘Stability
Analysis and Control Synthesis for Switched Systems: A

Switched Lyapunov Function Approach’, IEEE
Transactions on Automatic Control, 47, 1883–1887.

Dayawansa, W.P., and Martin, C.F. (1999), ‘A Converse

Lyapunov Theorem for a Class of Dynamical Systems
which Undergo Switching’, IEEE Transactions on
Automatic Control, 45, 1864–1876.

Decarlo, R.A., Braanicky, M.S., Pettersson, S., and
Lennartson, B. (2000), ‘Perspectives and Results on the
Stability and Stabilisability of Hybrid Systems’,

in Proceedings of the IEEE, Special Issue on Hybrid
Systems ed. P.J. Antsaklis, Vol. 88, pp. 1069–1082.

Feron, E. (1996), ‘Quadratic Stabilizability of Switched

Systems via State and Output Feedback’, Technical
Report, CICS-p-468, MIT.

Hespanha, J.P., Liberzon, D., Angeli, D., and Sontag, E.D.

(2005), ‘Nonlinear Norm-observability Notions and
Stability of Switched Systems’, IEEE Transactions on
Automatic Control, 50, 754–767.

Hespanha, J.P., andMorse, A.S. (1999), ‘Stability of Switched
Systems with Average Dwell-time’, in Proceedings of
the 38th Conference on Decision Control, pp. 2655–2660.

Huang, Z.H. (2008), ‘Stabilizability Condition for Switched

Systems with Two Unstable Second-order LTI Systems’,
Technical Report, Center for Intelligent Control, National

University of Singapore (0801).
Huang, Z.H., Xiang, C., Lin, H., and Lee, T.H. (2007), ‘A
Stability Criterion for Arbitrarily Switched Second Order
LTI Systems’, in Proceedings of 6th IEEE International

Conference on Control and Automation, pp. 951–956.
Ishii, H., Basar, T., and Tempo, R. (2003), ‘Synthesis of
Switching Rules for Switched Linear Systems through

Randomised Algorithms’, in Proceedings of the 42nd
Conference Decision Control, pp. 4788–4793.

Liberzon, D. (2003), Switching in Systems and Control,

Boston: Birkhauser.
Liberzon, D., Hespanha, J.P., and Morse, A.S. (1999),
‘Stability of Switched Linear Systems: A Lie-algebraic

Condition’, Systems and Control Letters, 37, 117–122.
Liberzon, D., and Morse, A.S. (1999), ‘Basic Problems in
Stability and Design of Switched Systems’, IEEE Control

Systems Magazine, 19, 59–70.
Lin, H., and Antsaklis, P.J. (2005), ‘Stability and
Stabilizability of Switched Linear Systems: A Survey of

Recent Results’, in Proceedings of the IEEE International
Symposium on Intelligent Control, pp. 24–29.

Lin, H., and Antsaklis, P.J. (2007), ‘Switching Stabilizability

for Continuous-time Uncertain Switched Linear Systems’,
IEEE Transactions on Automatic Control, 52, 633–646.

Margaliot, M., and Langholz, G. (2003), ‘Necessary and

Sufficient Conditions for Absolute Stability: The Case of
Second-order Systems’, IEEE Transactions on Circuits
System – I, 50, 227–234.

International Journal of Control 709

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
a
t
i
o
n
a
l
 
U
n
i
v
e
r
s
i
t
y
 
O
f
 
S
i
n
g
a
p
o
r
e
]
 
A
t
:
 
1
0
:
3
0
 
3
0
 
J
u
l
y
 
2
0
1
0



Morse, A.S. (1996), ‘Supervisory Control of Families of
Linear Set-point Controllers – Part1: Exact Matching’,

IEEE Transactions on Automatic Control, 41, 1413–1431.
Narendra, K.S., and Balakrishnan, J. (1997), ‘Adaptive

Control using Multiple Models and Switching’, IEEE
Transactions on Automatic Control, 42, 171–187.

Narendra, K.S., and Xiang, C. (2000), ‘Adaptive Control of
Discrete-time Systems using Multiple Models’, IEEE

Transactions on Automatic Control, 45, 1669–1686.
Pettersson, S. (2003), ‘Synthesis of Switched Linear Systems’,

in Proceedings of the 42nd Conference on Decision Control,
pp. 5283–5288.

Rodrigues, L., Hassibi, A., and How, J.P. (2003), ‘Observer-

based Control of Piecewise-affine Systems’, International

Journal of Control, 76, 459–477.
Shorten, R.N., and Narendra, K.S. (1999), ‘Necessary and
Sufficient Conditions for the Existence of a Common

Quadratic Lyapunov Function for Two Stable Second
Order Linear Time-invariant Systems’, in Proceedings of

the American Control Conference, pp. 1410–1414.
Skafidas, E., Evans, R.J., Savkin, A.V., and Petersen, I.R.

(1999), ‘Stability Results for Switched Controller Systems’,
Automatica, 35, 553–564.

Sun, S., and Ge, S.S. (2005), Switched Linear Systems:
Control and Design, London: Springer-Verlag.

Wicks, M.A., and DeCarlo, R.A. (1997), ‘Solution of
Coupled Lyapunov Equations for the Stabilization of

Multimodal Linear Systems’, in Proceedings of the 1997
American Control Conference, pp. 1709–1713.

Wicks, M.A., Peleties, P., and DeCarlo, R.A. (1998),

‘Switched Controller Design for the Quadratic

Stabilization of a Pair of Unstable Linear Systems’,
European Journal of Control, 4, 140–147.

Xu, X., and Antsaklis, P.J. (2000), ‘Stabilization of Second-

order LTI Switched Systems’, International Journal of
Control, 73, 1261–1279.

Zhai, G., Lin, H., and Antsaklis, P.J. (2003), ‘Quadratic
Stabilizability of Switched Linear Systems with Polytopic

Uncertainties’, International Journal of Control, 76,
747–753.

Zhang, L.G., Chen, Y.Z., and Cui, P.Y. (2005), ‘Stabilization
for a Class of Second-order Switched Systems’, Nonlinear

Analysis, 62, 1527–1535.

Appendix A. Analysis of the special cases when

Assumption 2 is violated

Case (1) A and B have only one common eigenvector.
Without loss of generality, we assume that the eigenvalues of
A and B corresponding to the common eigenvector are �2A
and �2B, and the common eigenvector is [0, 1]T, then we have

A ¼
�1A 0

a21 �2A

� �
, B ¼

�1B 0

b21 �2B

� �
,

where at least one of a21 and b21 is not zero. Thus the
dynamic of the switched system can be described as

_x ¼
�11ðtÞ 0

�21ðtÞ �22ðtÞ

� �
x,

where �11(t)2 {�1A, �1B}, �21(t)2 {a21, b21} and �22(t)2
{�2A, �2B}.

For the switched systems (2) and (3), �11(t) is non-
negative because all the eigenvalues of A and B are

non-negative. It follows that jx1ðtÞj ¼ e

R t

0
�11ð�Þd�jx1ð0Þj is

lower-bounded by jx1(0)j, so the switched system (2) or (3)

is not RAS in this case.
For the switched system (4), if both �1A and �1B are non-

negative, similarly jx1(t)j is lower-bounded by jx1(0)j, the
switched system (4) is not RAS. If one of �1A and �1B is
negative, the switched system (4) is RAS, which is proved as
follows.

Consider a periodical switching signal �T(t) with a period
of T¼ tAþ tB

�TðtÞ ¼
A if 0 � t5 tA
B if tA � t5T

�
:

It follows that

xðTÞ ¼ eBtBeAtAxð0Þ ¼
4

�xð0Þ ¼
�11 0

�21 �22

� �
xð0Þ,

where �11¼ e�1AtAþ�1BtB, �22¼ e�2AtAþ�2BtB,

�21 ¼
a21

ð�1A � �2AÞ
e�1AtA � e�2AtA
	 


e�1BtB

þ
b21

ð�1B � �2BÞ
e�1BtB � e�2BtB
	 


e�2AtA :

Let x(0) be on the eigenvector corresponding to the
eigenvalue �11, i.e.

xð0Þ ¼ 1,
�21

ð�11 � �22Þ

� �T
,

we have x(T)¼�11x(0). If one of �1A and �1B is negative, for
every pair (tA, tB) satisfying �1AtAþ �1BtB50, there exists a
corresponding vector such that the trajectory starting from
this vector is asymptotically stable under the switching signal
�T(t). Since one of a21 and b21 is non-zero, the collection of
these vectors, corresponding to the different pairs (tA, tB)
with 05�1151, is a region instead of a single line. Based on
Definition 1, the switched system (4) is RAS.

Case (2) A and B have two common eigenvectors. In this
case, we have

_x ¼
�11ðtÞ 0
0 �22ðtÞ

� �
x:

Similarly, the switched system (2) or (3) is not RAS since
both �11(t) and �22(t) are non-negative.

In this case, the switched system (4) is RAS if and only if
(a) one of �1A and �1B is negative; and (b) one of �2A and �2B
is negative and (c) the product of the two negative
eigenvectors is greater than the product of the other two
non-negative eigenvectors. These conditions are equivalent to
the existence of a pair (tA, tB) such that both �1AtAþ �1BtB
and �2AtAþ �2BtB are negative.

Note that the special cases that Assumption 2 is violated
can also be solved by direct inspection. They are discussed
here just for the completeness of the results.
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Appendix B. Proof of Lemma 2

It follows from (17) and (18) that

fAð�Þ � fBð�Þ

¼

ðtan2 � þ 1Þ½ða12b22 � a22b12Þ tan
2 �

þða12b21 þ a11b22 � b12a21 � b11a22Þ tan �

þða11b21 � b11a21Þ�

8><
>:

9>=
>;

½a12 tan
2 � þ ða11 � a22Þ tan � � a21�

�½b12 tan
2 � þ ðb11 � b22Þ tan � � b21�

� �

¼
ðk2 þ 1ÞNðkÞ

DAðkÞDBðkÞ
ðB1Þ

With reference to (8) and (10), we have

fAð�Þ � fBð�Þ ¼
1

r

dr

d�

����
�¼A

�
dr

d�

����
�¼B

� �
: ðB2Þ

Combining (B1) and (B2) yields

NðkÞ ¼
1

rðk2 þ 1Þ

dr

d�

����
�¼A

DAðkÞDBðkÞ �
dr

d�

����
�¼B

DAðkÞDBðkÞ

� �
:

ðB3Þ

It follows from (26), (34) and (35) that

NðkÞ ¼
1

r

dr

dt

����
�¼A

ðkÞDBðkÞ �
dr

dt

����
�¼B

ðkÞDAðkÞ

� �
: ðB4Þ

Let �k be a real root of DA(k), then �k is an eigenvector of
A. It follows from Assumption 2 that DBð �kÞ 6¼ 0. So Nð �kÞ ¼ 0
only if dr

dt

��
�¼A
ð �kÞ ¼ 0, which implies that the eigenvalue,

corresponding to the eigenvector k ¼ �k, is zero. It contradicts
the condition that A is non-singular.

Appendix C. Proof of Lemma 3

Since HA(k) and HB(k) are both negative, the trajectories of
the two subsystems have opposite directions in this region.
With reference to Figure 3, define u and l as the lines where
x2¼ kux1 and x2¼ klx1. Consider an initial state on l at t0. Let
the trajectory follow �A until it hits u at t1 and switch to �B

until it returns to the line l again at t2. Define the states at t0,
t1 and t2 as (r0, �0), (r1, �1) and (r2, �0) respectively, it yields

r0¼CA0gAð�0Þ ¼CB0gBð�0Þ, r1¼CA0gAð�1Þ ¼CB1gBð�1Þ,

r2¼CA1gAð�0Þ ¼CB1gBð�0Þ:

ðC1Þ

It follows from (27) that CA1¼CA0(1þD), where

D ¼
1

CA0

Z t2

t1

HAð�ðtÞÞdt ¼
gAð�1Þ

gBð�1Þ

Z �0

�1

gBð�Þ

gAð�Þ
½ fBð�Þ � fAð�Þ�d�

is a constant between (�1, 0) depending on the known
parameters: kl, ku and the entries of A and B. An asymp-
totically stable trajectory can be easily constructed by
repeating the switching from t0 to t2.

lim
n!1

rðt0 þ nTÞ ¼ lim
n!1

CA0ð1þ DÞngð�0Þ ! 0,

where T ¼ t2 � t0 ¼
R �1
�0

1
QAð�Þ

d� þ
R �0
�1

1
QBð�Þ

d� and n is the
number of switching periods.

Appendix D. Proof of Lemma 4

Assumptions 3.1–3.3 can be satisfied by the transformation
�x1 ¼ �x1 when necessary. When Sij¼S1j, A1 equals J1, which
is invariant under the transformation �x1 ¼ �x1. Therefore, it
is reasonable to transform A1 and Bj simultaneously by
�x1 ¼ �x1 while the stability of the switched systems S1j

preserves. It is assumed that one of the eigenvectors of B is in
the fourth quadrant in S11 and S12.

3 Similarly, it is assumed
that the vector [1, k2]

T is in the fourth quadrant in S13.
Assumptions 3.4 and 3.5 can be satisfied by similarity

transformation with a unitary matrix W ¼
� �
 �

� �
when

necessary, where detðWÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2

p
¼ 1. Geometrically,

transformation with W is a coordinate rotation. The phase

diagram of A3¼ J3 is a spiral that is invariant under the

rotation. Therefore, it is possible to rotate the original

coordinate to satisfy Assumptions 3.4 and 3.5 while the

stability property preserves.
SinceW is unitary and real, W�1¼WT. In addition, A3 is

in its standard form J3. It follows that

�A3 ¼W�1A3W¼WTA3W¼WTJ3W

¼
� 

� �

� �
� �!

! �

� �
� �

 �

� �

¼
��2� ð�!þ!Þ�þ�2 �!�2þ ð���Þ��!2

!�2þ ð���Þ�� ð�!Þ2 ��2þ ð�!þ!Þ�þ�2

� �
¼ J3:

Similarly,

�B3¼
4

�b11 �b12
�b21 �b22

" #
¼W�1B3W¼WTB3W

¼

b11�
2 � ðb12 þ b21Þ�

þb22
2

� �
b12�

2 þ ðb11 � b22Þ�

�b21
2

� �
b21�

2 þ ðb11 � b22Þ�

�b12
2

� �
b22�

2 þ ðb12 þ b21Þ�

þb11
2

� �
2
6664

3
7775:

It follows that

�p2 ¼ �a12 �b22 � �b12 �a22 ¼ a12 �b22 � �b12a22

¼ 2 p2
�



� �2

þp1
�


þ p0

" #
: ðD1Þ

The polynomial inside the bracket in (D1) has the same
coefficients as N(k). If p240 and N(k) has two roots k25k1,
it is always possible to get a negative �p2 by a pair of (�, )
satisfying k2 5

�
 5 k1.

Similarly, if p2¼ 0 and p22 þ p21 þ p20 6¼ 0 that was
guaranteed by Assumption 1, it is always possible to find a
pair of (�, ) to guarantee �p2 6¼ 0.

Appendix E. The proof of Theorem 1 for other

cases of Sij

E1: Proof of Sij¼S12

In this case, the two subsystems are expressed as

A1 ¼
�1a 0
0 �2a

� �
, B2 ¼

1

	

	�b þ � �1
�2 	�b � �

� �
, ðE1Þ
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where �50 by Assumption 3.2, �2a4�1a40, and �b40.
Denote �1a¼ kA�2a, then kA2 (0, 1). Substituting the entries
of A1 and B2 into (32)–(35), it follows that

sgnðHAðkÞ ¼ �sgnð	Þsgnð �NðkÞÞsgnðkÞ ðE2Þ

sgnðHBðkÞ ¼ sgnð �NðkÞÞ ðE3Þ

sgnðQAðkÞÞ ¼ sgnðkÞ ðE4Þ

sgnðQBðkÞÞ ¼ sgnð	Þ, ðE5Þ

where

�NðkÞ ¼ k2 þ ½ðkA � 1Þ	�b � ðkA þ 1Þ��kþ kA�
2: ðE6Þ

Similar to the case Sij¼S11, we need to know the
locations of k1, k2 relative to �, which is based on

sgnðð�� k1Þð�� k2ÞÞ ¼ sgnð	Þ: ðE7Þ

Case 1: �NðkÞ does not have two distinct real roots.

(1.1) 	50: It follows that the discriminant of Equation (E6)

D12¼	
2�2bðkA�1Þ2þðkAþ1Þ2�2

�2�	�bðkA�1ÞðkAþ1Þ�4kA�
2

¼	�bðkA�1Þ½	�bðkA�1Þ�2�ðkAþ1Þ�þ ðkA�1Þ2�240,

which contradicts the condition that N(k) does not have two
distinct real roots. So 	50 is impossible in this case.

(1.2) 	40: With reference to Figure A1 and following the
similar argument as that for Figure 5, it can be concluded
that the switched system is unstabilisable.

Case 2: �NðkÞ has two distinct real roots and det(P2)50.

det(P2)¼�	50 leads to 	40. It follows from 	40 and
�50 (Assumption 3.2) that Equation (E7) is positive. Thus k1
and k2 are in the same side of �. In addition, jk1k2j ¼ kA�

25�2.
It results in �5k25k150 or �505k25k1.

(2.1) �5k25k150: Both (E2) and (E3) are negative when
k2 (k2, k1). Therefore, the switched system is regionally
stabilisable based on Lemma 3.

(2.2) �505k25k1: With reference to Figure A2, the
switched system is stable by similar argument as that for
Figure 5. It can be concluded that �5k25k150 is necessary
and sufficient for the stabilisability in Case 2.

Case 3: �NðkÞ has two distinct real roots and det(P2)40.

It follows from det(P2)40 that 	50. With reference to
(E6) and (E7), the only possible sequence is k25�5k150 in
this case. With reference to Figure A3, the BCSS �� for
this case is the same as (62) by similar argument as that for
Figure 10.

E2: Proof of Sij¼S13

A1 ¼
�1a 0
0 �2a

� �
, B3 ¼

!

	

	
 � � 1
�ð�2 þ 	2Þ 	
 þ �

� �
, ðE8Þ

where �40, !50, and 
¼�!50. Substituting A1 and
B3 into (32)–(35), it follows that sgnðHAðkÞÞ¼�sgnð	Þ
sgnð �NðkÞÞsgnðkÞ, sgnðHBðkÞÞ¼sgnð �NðkÞÞ, sgnðQAðkÞÞ¼sgnðkÞ,
sgnðQBðkÞÞ¼sgnð	Þ, where

�NðkÞ ¼ k2 � ½ðkA � 1Þ	
 þ ðkA þ 1Þ��kþ kAð�
2 þ 	2Þ: ðE9Þ

Case 1: �NðkÞ does not have two distinct real roots.

Figure A4 shows that the BCSS is �B for all k regardless
of the sign of det(P3). Hence the switched system is
unstabilisable.

Case 2: �NðkÞ has two distinct real roots and det(P3)50.
In this case, 	40. It follows from k250 (Assumption

3.3) and k1k2¼ kA(�
2
þ 	2)40 that k25k150. Hence HA(k)

and HB(k) are negative when k2 (k2, k1), the switched system
is regionally stabilisable based on Lemma 3.

Case 3: �NðkÞ has two distinct real roots and det(P3)40.

Figure A2. S12: det(P2)50, �505k25k1, the switched system is unstabilisable.

Figure A1. S12: N(k) does not have two distinct real roots,
the switched system is unstabilisable.
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In this case, we have 	50. Similarly, we obtain the BCSS
as (62) with reference to Figure A5.

E3: Proof of Sij¼S22

A2 ¼
�a 0

�1 �a

� �
, B2 ¼

1

	

	�b þ � �1

�2 	�b � �

� �
, ðE10Þ

where �a, �b40. Substituting A2 and B2 into (32)–(35), it
follows that sgnðHAðkÞÞ ¼ sgnð	Þsgnð �NðkÞÞ, sgnðHBðkÞÞ ¼
sgnð �NðkÞÞ, sgnðQAðkÞÞ ¼ �1, sgnðQBðkÞÞ ¼ sgnð	Þ, where

�NðkÞ ¼ k2 �
2�a�þ 1

�a
kþ

�a�
2 þ ð	�b þ �Þ

�a
: ðE11Þ

Case 1: �NðkÞ does not have two distinct real roots.

(1.1) 	50: It follows that

D22¼
2�a�þ1

�a

� �2

�4
�a�

2þð	�bþ�Þ

�a
¼
1�4	�a�b

�2a
40,

ðE12Þ

which contradicts the condition that N(k) does not have two
distinct real roots. So 	50 is impossible in this case.

(1.2) 	40: With reference to Figure A6, the switched system
is unstabilisable.

Figure A4. S13: N(k) does not have two distinct real roots, the switched system is unstabilisable: (a) det(P3)50 and
(b) det(P3)40.

Figure A3. S12: det(P2)40, the best case trajectory rotates around the origin clockwise.

Figure A6. S22: N(k) does not have two distinct real roots,
the switched system is unstabilisable.

Figure A5. S13: det(P3)40, the best case trajectory rotates
around the origin clockwise.
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Case 2: �NðkÞ has two distinct real roots and det(P2)50.

In this case, we have 	40. Then both HA(k) and HB(k)
are negative when k2 (k2, k1). Based on Lemma 3, the
switched system is regionally stabilisable as long as k1 and k2
exist. In addition, it can be shown that the existence of k1 and
k2 implies �5k25k1 in S22 as follows.

k2 � � ¼

2�a�þ1
�a
�

ffiffiffiffiffiffiffi
D22

p

2
� � ¼

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4	�a�b
p

2�a
4 0: ðE13Þ

Hence, it can be concluded that �5k25k1 is necessary
and sufficient for the stabilisability in Case 2.

Case 3: �NðkÞ has two distinct real roots and det(P2)40.
	50, Similarly, we have the BCSS as (62) with reference

to Figure A7.

E4: Proof of Sij¼S23

A2 ¼
�a 0
�1 �a

� �
, B3 ¼

!

	

	
 � � 1
�ð�2 þ 	2Þ 	
 þ �

� �
, ðE14Þ

where �40, !50, and 
 ¼ �! 5 0. So we have sgnðHAðkÞÞ ¼
sgnð	Þsgnð �NðkÞÞ, sgnðHBðkÞÞ ¼ sgnð �NðkÞÞ, sgnðQAðkÞÞ ¼ �1,
sgnðQBðkÞÞ ¼ sgnð	Þ, where �NðkÞ ¼ k2 � 2�a�þ1

�a
kþ

�að�
2þ	2Þ�ð	
��Þ

�a
.

Case 1: �NðkÞ does not have two distinct real roots.

(1.1) 	50: HA(k) is negative and HB(k) is positive for all
regions, then �B is the BCSS for all regions. On the
boundary, which is the eigenvector of �A, the BCSS is still
�B. Therefore �B is the BCSS for the whole phase plane and
it is trivial to show that the switched system is unstabilisable.

(1.2) 	40: Both HA(k) and HB(k) are positive, since the only
boundary is the real eigenvector of A, the trajectory alone A
goes to its real eigenvector and cannot go out of this region.
Hence �B is the BCSS for the whole phase plane and the
switched system is unstabilisable.

Case 2: �NðkÞ has two distinct real roots and det(P3)50.

It follows from det(P3)¼�	50 that 	40. Both HA(k)
and HB(k) are negative when k2 (k2, k1), thus the switched
system is regionally stabilisable as long as k25k1 exists. It
proves the first inequality of Theorem 1 because M¼þ1
and L¼�1 for S23 with reference to (46).

Case 3: �NðkÞ has two distinct real roots and det(P3)40.

In this case, 	50. Similarly, the BCSS is the same as (62)
with reference to Figure A8.

E5: Proof of Sij¼S33

A3 ¼
�a 1
�1 �a

� �
B3 ¼

!b

	

	
 � � 1
�ð�2 þ 	2Þ 	
 þ �

� �
,

where �a, �b40, !b50 and 
 ¼ �b
!b

5 0. Similarly, we

have sgn(HA(k))¼ sgn(N(k)), sgn(HB(k))¼ sgn(	)sgn(N(k)),

sgn(QA(k))¼�1, sgn(QB(k))¼ sgn(	), where

NðkÞ ¼
!b

	
f½ð	
 þ �Þ � �a�k

2 þ ½1þ 2�a�� ð�
2 þ 	2Þ�k

þ ð	
 � �Þ � �að�
2 þ 	2Þg ¼

4
p2k

2 þ p1kþ p0:

ðE15Þ

Case 1: N(k) does not have two distinct real roots.

(1.1) 	50: One of HA(k) and HB(k) is negative, and the other
one is positive for all k. The BCSS is one of the subsystems
for the whole phase plane. So the switched system is
unstabilisable.

(1.2) 	40 and p240: Both HA(k) and HB(k) are positive for
the whole phase plane, then switched system is unstabilisable.

(1.3) 	40 and p250: With reference to (15), we have
p2 ¼

!b

	 ½ð	
 þ �Þ � �a� and p0 ¼
!b

	 ½ð	
 � �Þ � �að�
2 þ 	2Þ�. If

p250, it follows from 	40, �a50 and 
50 that �40, which

Figure A9. S33: det(P3)40, the best case trajectory rotates
around the origin clockwise.

Figure A8. S23: det(P3)40, the best case trajectory rotates
around the origin clockwise.

Figure A7. S22: det(P2)40, the best case trajectory rotates
around the origin clockwise.
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leads to p040, which contradicts the condition that N(k)
does not have two distinct real roots. So this case will not
happen.

(1.4) 	40 and p2¼ 0: The case p2¼ 0 has been excluded by
Assumption 3.4.

Case 2: N(k) has two distinct real roots and det(P3)50.

Note that the sign of N(k) is positive when k2 (k2, k1)
because p2, the leading coefficient of N(k), was assumed to be

negative by Assumption 3.5. It follows from det(P3)¼�	50
that 	40. Both HA(k) and HB(k) are negative when
k2 (k2, k1), thus the switched system is regionally stabilisable
as long as the two roots k25k1 exists, which is equivalent to
the first inequality of Theorem 1.

Case 3: N(k) has two distinct real roots and det(P3)40.

In this case, 	50. With reference to Figure A9, the BCSS
can be derived that is the same as (62).
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