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Sample-size planning historically has been
approached from a power analytic perspec-
tive in order to have some reasonable proba-
bility of correctly rejecting the null hypothe-
sis. Another approach that is not as well-
known is one that emphasizes accuracy in
parameter estimation (AIPE). From the AIPE
perspective, sample size is chosen such that
the expected width of a confidence interval
will be sufficiently narrow. The rationales of
both approaches are delineated and two pro-
cedures are given for estimating the sample
size from the AIPE perspective for a two-
group mean comparison. One method yields
the required sample size, such that the
expected width of the computed confidence
interval will be the value specified. A modifi-
cation allows for a defined degree of probabil-
istic assurance that the width of the computed
confidence interval will be no larger than
specified. The authors emphasize that the cor-
rect conceptualization of sample-size plan-
ning depends on the research questions and
particular goals of the study.
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Suppose a mindful researcher performs a power analysis prior to
data collection in order to have an 80% chance of rejecting the null

hypothesis of no treatment effect in a two-group study. The researcher
assumes there is a “medium” effect (Cohen, 1988) in the population,
δ= .5, for the standardized difference between group means. A power
analysis reveals a necessary sample size of 64 participants per group.
The researcher dutifully conducts the study with this suggested sam-
ple size. At the completion of the study, the researcher discovered that
the data allowed for the rejection of the null hypothesis, with apvalue
of .007. Instead of stopping at this point, the researcher followed
recent suggestions (Wilkinson & American Psychological Associa-
tion Task Force on Statistical Inference, 1999) to consider effect size
measures. In particular, Cohen’sd in the sample was .4838, showing
support for the researcher’s expectations that the treatment effect is
indeed medium in the population. However, suppose this researcher
goes at least one step further in following recent recommendations by
forming a confidence interval aroundδ (Cumming & Finch, 2001;
Steiger & Fouladi, 1997; Thompson, 2002). Given the sample size of
128, a sampled of .4838 yields a 95% confidence interval ranging
from .1313 to .8345. Notice that this interval does not contain 0 and
thus is consistent with the hypothesis test. However, the interval is
wide relative to the effect size and does not offer strong support that
the population effect size is necessarily medium. Instead, the width of
the interval suggests that the true population effect size could plausi-
bly be smaller than “small” (δ= .2) or larger than “large” (δ= .8). Even
though sample size was adequate in this study to detect a nonzeroδ, it
was not sufficiently large to bound precisely the population parameter.

The appropriate method for sample-size planning, and thus the
appropriate sample size itself, depends on the desired goals of an
investigation. Methodologists have long emphasized sample-size
planning for empirical research to obtain useful information from
experimental and observational studies. Throughout this time, the
majority of emphasis has been placed on sample-size planning from a
purely “power analytic” perspective. Although the power analytic
framework has dominated the way researchers conceptualize sample-
size planning, it is neither the only approach nor always the best
approach that can be taken to estimate an appropriate number of par-
ticipants to include in a study. Although statistical power is undeni-
ably important for a given domain of research, simply obtaining
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adequate power may not always provide meaningful answers to cer-
tain research questions. Rather than or in addition to obtaining statisti-
cal significance, another goal that may be as important and potentially
more meaningful is obtaining parameter estimates that are accurate.

An alternative approach to the power analytic framework of sam-
ple-size planning is one that emphasizes accuracy in parameter esti-
mation (AIPE) (Kelley & Maxwell, in press). The goal of AIPE is to
obtain parameter estimates that accurately correspond to the popula-
tion value they represent. Conceptually, accuracy can be defined as the
extent that an estimate conforms to the true population value, that is,
the correctness of the estimate. Precision, however, is the
reproducibility of the estimate and is defined as the variability of the
estimate. Bias is also an important concept in the context of accuracy
and precision. Holding precision constant, estimates that systemati-
cally err generally lead to larger discrepancies between the estimates
and the population value than do unbiased estimates.

The formal definition of accuracy is given by the square root of the
mean square error and can be expressed as follows:
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where�θ is the estimate of the true population value,θ (Hellmann &
Fowler, 1999; Rozeboom, 1966, p. 500). Notice that the square root of
the mean square error can be decomposed into two components: the
variance, which is the measure of precision, and the square of the bias.
Thus, when the bias is zero (E[�θ– θ] = 0), precision and accuracy are
equivalent and can be used interchangeably.

In practice, the precision of parameter estimates is often gauged in
terms of the width of the corresponding confidence interval, which
can be expressed as a proportion of the standard deviation or in the
metric of the dependent variable. All other things being equal, the nar-
rower the width of a confidence interval the less uncertainty exists
about the plausible values of the population parameter. In general, the
narrower the confidence interval the more likely the obtained point
estimate will accurately represent the true population value. Given
that the two main sources of uncertainty scientists should seek to ban-
ish are randomness and imprecision (Casti, 1990, pp. 23-24), the
AIPE approach to sample-size estimation may well facilitate the
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accumulation of scientific knowledge better than a dichotomous
reject–fail-to-reject decision.

Planning sample size can be accomplished through (at least) two
conceptually different methods, one designed to obtain statistical
power and the other designed to obtain statistical precision. Depending
on the particular theoretical question of interest and the desired goals
of a study, sample-size planning should be approached from the power
analytic approach, the AIPE approach, or a combination of the two. It
is important to realize that planning sample size from one of the
approaches is a fundamentally different task than planning from the
other. The distinction between the two approaches is more than con-
ceptual, as the differences in estimated sample sizes can be substantial
depending on the desired level of power and the desired width of the
confidence interval.

It is unfortunate that some researchers have seemingly ignored the
planning of appropriate sample size for empirical investigations.
Ignoring sample-size planning altogether can have serious conse-
quences for a given domain of research. In fact, when a body of
research is based on studies where statistical power is low, the proba-
bility of rejecting a true null hypothesis (Type I error) could be only
slightly smaller than the probability of correctly rejecting the null
hypothesis (power). Thus, a substantial proportion of significant find-
ings in the published literature may be Type I errors (Bakan, 1966;
Rossi, 1990). When inferential statistics are used to answer research
questions, researchers are encouraged to plan not only the substantive
and theoretical aspects of the experimental design but also to plan
carefully the appropriate statistical analyses. When planning the
appropriate statistical analyses, it is pertinent to include sample-size
planning in order to likely accomplish the goals of the study from the
power analytic approach, the AIPE approach, or a combination of the
two.

Our purpose in this article is not to denigrate either of the two
approaches for sample-size planning, but rather it is to illustrate the
benefits that both power analysis and AIPE can offer in certain situa-
tions depending on the research question(s) and to show some differ-
ences that exist between the two methods. It is clear that both of the
approaches are important, and in many circumstances they can be
used in conjunction with one another to help produce quality studies.
We will use an illustrative example to better show the differences
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between the power analytic and AIPE approaches to sample-size plan-
ning. Although the appropriate method for sample-size planning
clearly depends on the particular goals and questions a researcher has
for a given study, it is likely that the most scientifically desirable sce-
nario is to obtain sufficient statistical power, such that a true effect can
be differentiated from a null value, and to obtain precise estimates for
parameters that are of theoretical and/or substantive interest. When
domains of research consistently produce low-powered studies that
are accompanied by imprecise estimates, a question should be raised
about the scientific merit of the theoretical and substantive conclu-
sions based on statistical methods from such an area of inquiry.

RATIONALE OF POWER ANALYSIS AND
NULL HYPOTHESIS SIGNIFICANCE TESTING

Statistical power is defined as the probability of correctly rejecting
the null hypothesis and is the complement to the probability of a
Type II error.1 Another way of conceptualizing statistical power is the
probability that the 100(1 –α) percent confidence interval correctly
excludes the value of the null hypothesis, whereα is the probability of
a Type I error. Statistical power is a function of four independent fac-
tors: (a) Type I error rate, (b) the population effect size, (c) the popula-
tion model error variance, and (d) sample size.2 Given a desired value
of statistical power, the appropriate sample size can be determined by
specifyingα, the population effect size, and the population model
error variance. A large body of literature exists on power analytic tech-
niques, which we do not attempt to duplicate. Rather, we provide a
conceptual overview of power analysis, and we will later refer the
reader elsewhere for methods of sample-size selection from the power
analytic perspective. Although it may be the case that null hypotheses
of exact point estimates are rarely exactly true in nature (Cohen, 1990,
1994; Meehl, 1978; cf. Hagen, 1997), the directionality of the effect in
question is often of utmost importance. Given that an effect exists,
regardless of its magnitude, directionality pertains to whether the true
effect in question is positive or negative.3 For example, suppose that a
two-group study is to be conducted and interest lies in determining
whether a mean difference exists. Although learning that an effect is
statistically significant may provide valuable insight into the
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particular research question, learning its direction (i.e., which mean is
larger) will likely provide even more meaningful information about
the underlying process(es) of the system.

Directionality, however, generally makes sense for single degree of
freedom effects only. Thus, not every statistically significant effect
will have a meaningful directionality associated with it. For example,
suppose a three-group study was conducted, where interest was in
determining whether any group differences existed. Further suppose
that an analysis of variance (ANOVA) yielded a significantF statistic,
implying that there are indeed differences among the population
group means. However, because there are multiple degrees of freedom
associated with the effect, attempting to interpret directionality is
rather difficult, if not impossible.4 Because confidence intervals gen-
erally make sense only when directionality makes sense, a direct com-
parison of power and precision can generally be made for statistical
tests only when directionality is meaningful.

Some effect size proponents suggest that the reporting of confi-
dence intervals, effect sizes, and confidence intervals around effect
sizes is the “future” of quantitative research (Thompson, 2002). On
the basis of the effect size alone, effects that truly exist but do not seem
substantial may be considered unnecessarily trivial.5 Rather than criti-
cizing significance testing in general as some have done or taking an
extreme view stating that “we must abandon the statistical signifi-
cance test” (Schmidt, 1996, p. 116), it is important to realize that dif-
ferent questions are appropriately answered by different methods. For
example, it may make little sense to interpret measures of effect size or
confidence limits for purely theoretical questions, as these questions
are frequently answered appropriately by null hypothesis significance
tests. This is often the case when interest lies only in evaluating
whether any group differences exist or when the direction of the effect
is of sole interest to the researcher. Although significance testing
alone may be appropriate in certain situations, in many situations
(especially those where the research addresses practical or applied
questions), an estimate of the parameter of interest is desired as well as
confidence bounds around the population value.

Although effect sizes, confidence intervals, and confidence inter-
vals around effect sizes can often provide information beyond that of
the corresponding significance test, for some questions confidence
intervals and effect sizes either do not exist or provide nothing more
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than the corresponding significance test. For example, suppose a
researcher performs an ANOVA and tests all the pairwise group mean
comparisons. Although it may be the case that pairwise effect sizes
provide meaningful information, the overall ANOVA effect size is
generally less directly interpretable. When the ANOVA effect size is
not 0, it illustrates that there are some mean differences between
groups within the sample. However, a statistical significance test is
needed to infer whether this value is likely to have occurred by chance
alone. The effect size for the ANOVA omnibus null hypothesis test
offers little intuitive value in the absence of a significance test, as it is
not discernable where group differences persist.6 In the context of
multivariate statistics, there exist few measures of effect that provide
information above that of the significance test(s). Wainer (1999) illus-
trates other situations where significance testing provides valuable
insight into a variety of problems. It is important to realize that null
hypothesis significance testing has its place in scientific inquiry and
such inferential techniques can be valuable for the information they
provide.

Whenever null hypothesis significance testing is determined to be
appropriate and valuable, it is imperative that statistical power be a top
priority. Performing a power analysis is thus strongly recommended
in these situations, and the power analysis should ideally consist of
determining sample size for a range of probable effect sizes in a type
of sensitivity analysis.7 That is, researchers should perform power
analyses for a range of effect sizes in order to understand the nonlinear
relationship that exists between the effect size and required sample
size. This is useful because the effect size itself is generally unknown
and sometimes difficult to estimate. Because of this difficulty in esti-
mation, the effect size has been referred to as the “problematic param-
eter” (Lipsey, 1990, chap. 3). Nevertheless, the difficulty in hypothe-
sizing the population effect size should not prevent researchers from
performing a power analysis, if in fact significant results are desired.
When treatment effects exist in the population, it is best to find those
differences and document the direction (if it makes sense to do so) of
the effect. By carefully planning the research design, the odds can be
in favor of finding true treatment effects.

Although null hypothesis significance testing has long been criti-
cized, “There is no sign that 75 years of criticism of significance test-
ing has had a significant impact on its prevalence and use” (Murphy,
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2002, p. 120). Given that researchers continue to rely on inferential
statistics with the desire to achieve statistically significant parameter
estimates, it is clear that researchers who currently ignore power
should begin to consider seriously the issue of statistical power and the
effect that Type II errors have on a given domain of research. If conclu-
sions are to be drawn from the results of significance tests, statistical
power should be a major concern. When a particular study has impli-
cations for health, education, or social and public policies, knowingly
ignoring issues of statistical power can be considered unprofessional
and can potentially be quite costly. When Type II errors persist in a
given domain of research, confusion often follows because of the
inconsistencies in the literature. Furthermore, the cumulative knowl-
edge in a particular area can suffer dramatically if low-powered stud-
ies are continually conducted. When low-powered studies dominate
the scientific landscape of a particular area, the results of similar
research will likely be different from study to study and scientific
growth can falter because of these inconsistencies (Hunter & Schmidt,
1990, chap. 1; Kraemer, Gardner, Brooks, & Yesavage, 1998;
Rosenthal, 1993; Schmidt, 1996).

RATIONALE OF THE AIPE APPROACH AND
THE IMPORTANCE OF PRECISE ESTIMATES

Although power analysis has dominated the realm of sample-size
planning, another alternative that may be better suited to the needs of
some researchers is AIPE. The goal of AIPE is not necessarily to
obtain statistically significant parameter estimates; it is to obtain esti-
mates that accurately estimate the corresponding population parame-
ter. In the AIPE framework, accuracy is relative and refers to the corre-
spondence between the population value and its estimate. The
precision and thus accuracy of an estimate in this context refers to the
width of the confidence interval formed around the parameter, and
selecting a sample size such that this interval is narrow leads to esti-
mates that are more accurate. Probabilistically, by planning sample
size such that the computed confidence interval width is narrow,
parameter estimates will better correspond to their population value,
as less uncertainty will exist for the obtained point estimates. Often-
times, obtaining parameter estimates that are accurate leads to a better
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understanding of the phenomenon under study than does the dichoto-
mous reject–fail-to-reject decision provided by null hypothesis signif-
icance testing. In the realm of scientific inquiry, imprecision is one
characteristic of a parameter estimate (or theory) that should be elimi-
nated as much as possible. Because “prediction and explanation are
the twin pillars upon which the goals of the scientific enterprise rest”
(Casti, 1990, p. 28), achieving accurate parameter estimates will not
only facilitate the future prediction of the parameter of interest but
also may help when forming explanations about why and how inde-
pendent variable(s) and dependent variable(s) are (or are not) related
to one another. When accurate predictions and viable explanations are
available for some phenomenon, the verisimilitude of knowledge can
be greatly enhanced in a particular area, which can have far-reaching
consequences, as stronger more precise theories can be developed and
subsequently tested.

Even when sample size is large enough to provide adequate power,
a confidence interval based on this sample size may be too wide to
obtain useful information about the parameter of interest, as a wide
confidence interval suggests that the obtained parameter estimate may
not closely approximate the population value. Cohen has stated that
the reason confidence intervals have seldom been reported in behav-
ioral research is because the widths of the confidence intervals are
often “embarrassingly large” (Cohen, 1994, p. 1002). Methodologists
generally agree with one another in strongly encouraging the use of
confidence intervals. In fact, the most recent edition of the American
Psychological Association’s (2001) publication manual states that
confidence intervals are “in general, the best reporting strategy. The
use of confidence intervals is therefore strongly recommended” (p. 22).
As Thompson (1999, p. 162) has pointed out, however, “encourage-
ment” in the absence of strict standards may send a mixed message
regarding the importance of (in this case) confidence intervals, whereas
other, perhaps less pressing matters (page numbering, appropriate
abbreviations, the font and typeface of headings, etc.) are literally
required.

An argument can be set forth that obtaining an accurate parameter
estimate facilitates a better understanding of the effect in question and
is more important for discovery in a productive science than is simply
rejecting or failing to reject some null hypothesis. Oftentimes a rejec-
tion of a null hypothesis provides an area of research with little new
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knowledge of the system under study. Sufficiently narrow confidence
intervals, however, can help lead to a knowledge base that is much
more valuable to other researchers, and equally to oneself, when the
desire is to understand the process(es) of the system under study.
Given the fact that confidence intervals convey such useful informa-
tion for scientific inquiry, coupled with the fact that a narrow confi-
dence interval illustrates a parameter that is probabilistically esti-
mated accurately, sample-size planning from the AIPE perspective
should be seriously considered by researchers in the design phase of
studies. Rather than solving for sample size by specifying a desired
power, within the AIPE framework sample size is determined by spec-
ifying the desired width of the confidence interval. For example, sup-
pose there is a desire to compare the means between two groups on
some dependent variable. In the introductory example, rather than
simply performing at test with the goal of claiming that the mean dif-
ference significantly differs from 0, the ideal scenario following the
AIPE approach would be to obtain a narrow confidence interval for
the difference in means where the width of the confidence interval was
specified in advance.8 The expected precision of the estimate (width of
the confidence interval) is a value specified by the researcher in the
design phase. When scientists can accurately estimate the population
parameter of interest and accompany the point estimate with a narrow
confidence interval, more information about the parameter and the
underlying process(es) can be learned. Recall that the AIPE approach
need not concern itself with whether the confidence interval does or
does not contain the null value. However, we will momentarily revisit
the possibility of combining AIPE and power analysis in what may be
the best overall research strategy for many situations.

In light of the recent emphasis on confidence intervals and effect
size estimation in the methodological literature (Algina & Olejnik,
2000; Steiger & Fouladi, 1997; Thompson, 2002; Wilkinson & Amer-
ican Psychological Association Task Force on Statistical Inference,
1999), it is important for researchers to understand that the AIPE
approach to sample-size planning allows for the expected widths of
confidence intervals to be set a priori. Not only do confidence inter-
vals provide the same information as null hypothesis significance
tests, they also illustrate the (im)precision of the estimated parameter.
As Gardner and Altman (1986, p. 746) state, “the purpose of most
research investigations in medicine [and indeed most research in

Kelley et al. / METHODS OF SAMPLE-SIZE PLANNING 267



general] is to determine the magnitude of some factor(s) of interest.”
Anytime a meaningful parameter estimate is reported, it ideally
should be accompanied with a confidence interval, and preferably one
that is not “embarrassingly large.”

Because confidence intervals can oftentimes be more useful than
null hypothesis significance testing, coupled with the fact that confi-
dence intervals generally yield information above and beyond that of
significance tests, it seems reasonable that researchers would plan
studies such that the obtained confidence intervals would be suffi-
ciently narrow. However, sample-size planning for purposes of accu-
racy often has not been considered. This is in no small part due to
methodologists who have long hailed power analyses rather than the
obtainment of estimates that closely correspond to their population
value. However, the tide may be turning with regard to sample-size
planning from a solely power analytic perspective. With a great deal of
emphasis currently being placed on confidence intervals, the AIPE
perspective should become more salient as a methodological technique.

ILLUSTRATIVE EXAMPLE

To demonstrate the similarities and differences between the power
analytic and AIPE approaches to sample-size planning, an illustrative
example is provided. Suppose a researcher is interested in the effects
of a new medication on weight loss. The researcher randomly assigns
overweight participants to either a treatment group or a control group.
Participants in the treatment group receive the medication of interest
and follow an exercise routine, while the control group participants
receive a placebo in place of the active medication and follow the same
exercise routine. From previous investigations, the researcher esti-
mates the population within-group standard deviation (assumed to be
equal for both groups) to be 20 pounds. The Type I error rate will be
.05 throughout this section, with a corresponding confidence level of
95% for interval estimation.

SAMPLE SIZE FOR POWER

Suppose that the researcher is interested in detecting a statistically
significant difference in the mean amount of weight lost during the
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experiment but is unsure of the number of participants that will be
available or necessary for a specified level of statistical power. Rather
than doing a traditional power analysis by specifying the effect size
and solving for sample size, the researcher first examines the relation-
ship between sample size and power given three different effect sizes.
The population effect sizes chosen for the group mean difference (∆ =
16, 10, and 4 pounds) correspond to Cohen’s definition of a large (δ=
.8), medium (δ = .5), and small (δ = .2) standardized effect sizes,
respectively. Figure 1 illustrates the power of the statistical test given
the total sample size and small, medium, and large standardized effect
sizes, assuming equal sample size per group. Notice the nonlinearity
in Figure 1 between sample size and the power of the statistical test.
As can be seen, sometimes a minimal increase in sample size can have
a dramatic effect on power, while other times a substantial increase in
sample size yields only a negligible increase in statistical power.

Suppose that the effect size considered to be minimally important
for the medication to be practically beneficial is determined to be 10
pounds. Thus, the power analysis will proceed using an estimated
effect size of 10 pounds. The researcher performs sample-size plan-
ning for statistical power .5, .8, and .95 in a sensitivity analysis (con-
ceptualization one from note 7). For the hypothesized minimally
important effect size of 10 pounds, the total sample sizes required
(which are implicit in the middle curve of Figure 1) for statistical
power of .5, .8, and .95 are 64, 128, and 210, respectively. Thus,
assuming that the parameter values are correct, if the researcher used
64 total participants (32 per group), he or she would have the same
probability of rejecting the null hypothesis as heads on a coin flip.9

Statistical power of .5 should usually be considered inappropriate, as
one should generally not leave obtaining correct results to such a sub-
stantial amount of chance. Furthermore, notice that a total sample size
of 210 is necessary if one is interested in giving the probability of a
Type II error the same weight as a Type I error. This oftentimes seems
reasonable, because Type II errors can often be as serious or even more
detrimental than a Type I error.10 Notice that a total of 128 participants
are necessary for a level of power of .8, which is generally regarded as
a lower bound on acceptable statistical power.
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SAMPLE SIZE FOR PRECISION

Another possible scenario is that the researcher conducting the
hypothetical weight loss study is interested in a precise estimate of the
true treatment effect. Thus, the researcher decides to plan sample size
within the AIPE framework in order to bound precisely the population
difference between the means for the treatment and control groups,
such that the obtained point estimate accurately represents the popula-
tion value. In the case of AIPE, the required values are the (a) confi-
dence level (e.g., 95% or 99%), (b) the desired confidence interval
width or half width, and (c) the population model error variance. It is
important to realize the only value required that is not at the discretion
of the researcher is the population model error variance. Recall that
under the power analytic scenario, the researcher is not only required
to estimate the population model error variance but also the popula-
tion effect size, both of which are generally unknown. In this regard,
AIPE requires less prior knowledge on the part of the researcher than
does the power analytic approach.
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Figure 1: Power as a Function of Total Sample Size for the Population Group Mean Dif-
ference (∆) on Weight Loss for Effect Sizes of 16, 10, and 4 (population standard
deviation equals 20).

NOTE: These∆ values correspond with Cohen’s definition of large (δ = .8), medium (δ = .5),
and small (δ = .2) standardized mean differences respectively.



Suppose the researcher is interested in the relationship between the
confidence interval half width and the required sample size. Figure 2
illustrates the total sample size necessary for precision as a function of
the desired half width of the confidence interval. Although at first Fig-
ure 2 may look as though it is a traditional power curve, careful exami-
nation shows that it is (what we call) a precision curve, where sample
size is not a function of the effect size, as in a traditional power curve,
but a function of the desired confidence interval half width. Implicit in
Figure 2 is the fact that halving the width of a confidence interval
essentially requires a fourfold increase in sample size. For example,
had the half width been specified as 10, required sample size would be
100, and it would be 388 if the specified half width were halved to 5.
As was true with Figure 1 depending on the particular location on the
curve, a minimal change in an input value can have a dramatic effect
on required sample size or a substantial change in the input parameter
can have a small effect on sample size.

COMPARING SAMPLE SIZE FROM THE POWER
ANALYTIC AND AIPE APPROACHES

Rather than approaching sample-size planning from either a
strictly power analytic approach or a strictly AIPE approach, another
plausible scenario, and the strategy we generally recommend, is that
sample size be planned from a combination of the two approaches.
Combining the power analytic and the AIPE approach can allow one
to have reasonable precision when power is the primary concern, as
well as to have reasonable power when precision is the primary con-
cern. Suppose that the researcher in the hypothetical weight loss study
wanted to compare the required sample sizes for a variety of levels of
statistical power and statistical precision. Given different estimates of
the input parameters, Figure 3 shows the relationship of necessary
sample size for power of .5, .8, and .95, to the necessary sample size
for confidence interval half widths of 5, 7.5, and 10.

Figure 3 shows that necessary sample size does not depend on the
anticipated (or minimally important) group mean difference in the
AIPE approach. This is contrary to the power analytic approach,
where there is a nonlinear relationship between the group mean differ-
ence and necessary sample size. When striving to maintain both a
specified level of power as well as a specified precision, the sample
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size selected should be the one that is derived from the approach that
yields the greatest estimate of necessary sample size. Figure 3 demon-
strates that planning sample size for power is indeed a fundamentally
different task than planning sample size for precise estimates, and it
also shows that the approach that necessitates the larger sample size
depends on the particular situation.

PLANNING SAMPLE SIZE FOR
CONFIDENCE INTERVALS FROM THE AIPE
PERSPECTIVE IN TWO-GROUP SITUATIONS

Previously, we illustrated the relationship between the interval half
width and sample size in Figure 2 and a comparison between sample
size necessary for the power analytic and AIPE approaches in Fig-
ure 3. We did not show how to derive such sample-size estimates, as
the discussion was conceptual at that point. For the power analytic
approach to sample-size planning, Cohen (1988, chap. 3) gives exten-
sive tables for the necessary sample size to achieve desired power in a
two group situation. Hahn and Meeker (1991) show the necessary
steps for calculating sample size for a desired half width in a single-
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group design; we generalize their results for the AIPE approach in the
context of a two-group mean comparison. In an attempt at a precision
analysis, Cobb (1984) showed a method for comparisons and con-
trasts within an ANOVA context, where a simple but approximate
method was used for sample-size planning for desired precision of a
95% confidence interval. The method given below, like the Hahn and
Meeker approach, is a general and exact procedure. The following
subsection describes the computations necessary for estimating sam-
ple size from the AIPE perspective when a specified width around the
observed effect size is desired and provides an illustration of its usage.

COMPUTATIONS AND PROCEDURES

The 100(1 –α) percent confidence interval for the difference
between two independent group means can be written as follows:

( ) ( ) ( )Conf X X t s
n n

n nN. ;1 2 1 2 2
1 2

1 2

100 1− ±
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

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



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= −− −α α , (2)
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Figure 3: Total Sample Size Necessary for Selected Values of Power and Precision as a
Function of the Population Group Mean Difference (population standard devi-
ation equals 20).



whereX X1 2− is the observed effect size (the difference between
sample means),n1 andn2 are the sample sizes for Groups 1 and 2
respectively,t(1 –α/2; N – 2) is the critical value at the 1 –α/2 quantile of at
distribution withN-2 degrees of freedom (N = n1 + n2), ands is the
pooled within-group standard deviation. The quantity added and sub-
tracted to the observed effect size in equation 2 is defined asw. The
upper and lower confidence bounds are determined byw, the half
width of the confidence interval (2w is the full width of the confidence
interval). The degree of precision of the confidence interval, which
can be conceptualized asw or 2w, is the value of most interest within
the AIPE framework. As will be shown, the value ofw (or 2w) can be
set a priori by the researcher in accord with the desired precision of the
estimated parameter.

Assuming equal sample sizes per group (n1 = n2 = n), the half width
can be expressed from equation 2 as the following:

( )w s
n

t n= − −
2

1 2 2 2α ; . (3)

To estimate the necessary sample size for an expected half width ofw,
n must be solved for in equation 3 and the pooled sample variance,s2,
must be replaced by the population value,σ2, which yields the follow-
ing formulation:

( )
n

t

w

n=








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− −
2 2 1 2 2 2

2

σ α ;
. (4)

Notice thatn is necessarily involved on the right side of equation 4 in
determining the appropriate critical value, and because no tractable
closed form solution exists, solving equation 3 requires an iterative
procedure.11 The procedure begins by substituting the critical value
from the standard normal distribution for the criticalt value in order to
obtain a starting value forn. When performing the procedure by hand,
n should be rounded up to the next largest integer after each iteration
until the difference betweenn from theith iteration and the (i + 1)th
iteration does not change. That is, when performing the procedure by
hand, the procedure converges when the computed group sample size
does not change after consecutive iterations. When performing the
procedure on a computer, the iterative procedure stops when the
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difference between estimated sample sizes is less than some arbi-
trarily small value (we use 1e– 6) set by the researcher. The final sam-
ple size is rounded up to the next largest integer. It is important to real-
ize this procedure assumes equal sample size per group and estimates
the per group sample size. The total sample size is thus 2n.

In any given sample, the obtainedswill not equalσ, even if the true
value ofσ is known. Approximately half of the time the sampleswill
be larger thanσ, and the other half of the timeswill be smaller thanσ.
Because the computation ofn is based onσ, whereas the samplew
depends ons, the obtained samplewwill be larger than the specifiedw
about half of the time and smaller the other half of the time. The
expected value, however, of the computedw is the value specified,
provided the correct value ofσ was used. Therefore, use of equation 4
will ensure that the desired width for the confidence interval will be
obtained about 50% of the time.

However, a modified per group sample size,nM, can be found such
that a researcher can be a desired percent confident that the observedw
will be less than or equal to the value specified. The uncertainty speci-
fied by the researcher of obtaining an observedw less than or equal to
the specifiedwwill be denoted asγ. Thus, 1 –γ is the confidence level
of obtaining aw that is less than or equal to the specified value. A mod-
ification of equation 4 uses the 1 –γ quantile from aχ2 distribution
with 2nM – 2 degrees of freedom (Hays, 1994, pp. 355-358), such that
the variance used in equation 4 is the value that is expected to be
exceeded onlyγpercent of the time. Thus, the obtainedw in any given
sample will be less than or equal to the specifiedw with 1 –γpercent
confidence.12 The modified sample size,nM is given as follows:
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Like equation 4, equation 5 also must be solved iteratively. The
computations for equations 4 and 5 can be solved by hand with the
tabled values fromt andχ2 distributions or by an iterative computer
routine. Appendix A shows detailed calculations of solving equa-
tions 4 and 5 by hand. Appendix B gives S-Plus and R code for solving
equations 4 and 5, the preferred method.
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THE PERSISTENCE OF
SMALL-SAMPLE RESEARCH

More than 40 years after the publication of Jacob Cohen’s (1962)
survey documenting underpowered studies in psychological research
and the publication of his bookStatistical Power Analysis for the
Behavioral Sciences(1969), the issue of statistical power continues to
be largely ignored by many researchers in the behavioral sciences.
Although there has been a great deal of improvement in the planning
of sample size for studies, work still remains. Generally speaking, the
prerequisite for publication consideration in substantive and applied
journals is the obtainment of statistical significance. Whether this
practice is truly in the best interest for scientific progress and the accu-
mulation of knowledge is an issue in itself, but given that this is the
case, it seems such a universal “editorial policy” would force research-
ers to design studies with adequate power (Maxwell, 2000, p. 452).
However, it does not generally seem to do so. Presumably most
researchers know and appreciate the benefits power analysis provides.
The conundrum that remains is the reason why power analyses are not
routinely carried out by applied researchers.

Although methodologists have worked hard to promote the wide-
spread use of power analysis, perhaps their good intentions have led to
the widespread lack of use. In any given study, there is typically a col-
lection of significance tests that are conducted. Even if power is low
throughout the study for any given test, there is often a much higher
probability that at least one statistical test is significant, thus yielding a
“publishable” study. For example, suppose that a researcher conducts
five orthogonal comparisons from a six-group study. Further suppose
that the powers of the tests are .5, .4, .3, .2, and .1, for tests one through
five, respectively. The probability that at least one of the tests will
result in significance is .85.13 Due to publication practices in the
behavioral sciences, the researcher conducting this study would have
an 85% chance at having a “publishable” study.

Even though power for any one of the statistical tests was quite
poor, overall there was a high probability of achieving statistical sig-
nificance for at least one of the tests. Thus, a likely reason why some
researchers have continually ignored power analysis in the design
phase of studies is that they know they can often get away with it
(Murphy, 2002), in the sense that statistical significance is achieved
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somewhere in the collection of tests, even though for any one of the
tests statistical power may be low. The power of statistical tests often
becomes a moot point if and when significance is found. Thus, given
statistical significance is achieved, statistical power is often irrelevant
from the standpoint of the researcher and many editors who essen-
tially require significance before publication. This is generally not a
good idea nor is it one that adds lasting contributions to science. If sev-
eral low-powered studies of the same phenomenon are reported, it is
likely that the significant effect(s) will not be consistent from one
study to the other and confusion persists for readers (and the research-
ers themselves) about the “conflicting” results. One alternative when
multiple low-powered studies exist is to perform a meta-analysis by
combining the results of several studies (Hedges & Olkin, 1985;
Hunter & Schmidt, 1990; cf. Kraemer et al., 1998). However, this is
not always practical if few or no studies have been conducted on a par-
ticular phenomenon. Caution is also warranted when choosing meta-
analysis as a research synthesis option, in the sense that if the studies
are not truly examining the same phenomenon, the results of the meta-
analysis may be misleading.

Instead of rejecting or failing to reject the null hypothesis, presum-
ably many researchers would rather obtain accurate estimates of the
parameter(s) of interest. Achieving accuracy requires approaching
sample size from an AIPE perspective, where the computed confi-
dence intervals have expected widths, optionally with a degree of
assurance, set a priori by the researcher. When the goal is to achieve
accurate parameter estimates bounded by narrow confidence inter-
vals, it is often more difficult to satisfy the goal of AIPE across a col-
lection of parameter estimates in a study than it is achieving statistical
significance somewhere among the parameter estimates.

Although researchers have been able to avoid sample-size planning
under the power analytic framework because multiple statistical tests
are likely to turn up statistical significance somewhere, it is much
harder to avoid sample-size planning when the width of confidence
intervals is the major concern. In general, without the proper sample-
size planning, it is more difficult to obtain a confidence interval with a
narrow width than it is to find ap value less thanα somewhere across
multiple tests. With such an interest (sometimes requirement) in con-
fidence interval reporting, at some point researchers will have to ask
themselves if wide confidence intervals are satisfactory to their
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research. If they are, then perhaps no changes in the design phase of
their studies need to occur. If, however, they are not pleased with wide
confidence intervals and would like to curtail the likelihood of an
“embarrassingly large” interval, they will have to think seriously
about planning sample size from the AIPE perspective.

If and when there is a mandate to provide narrow confidence inter-
vals, continually avoiding sample-size planning will be more difficult.
If editors and the scientific community in general demand that point
estimates be accompanied by narrow (relatively speaking) confidence
intervals, such that the point estimate is likely a reasonable representa-
tion of the population parameter it represents, the design phase of
research would likely include sample-size planning. Perhaps if more
methodologists begin to emphasize AIPE rather than statistical power
alone, researchers would better appreciate the importance of sample-
size planning and thus be more willing to plan the appropriate sample
size such that embarrassingly large confidence intervals are not often
obtained. Because AIPE seems to be a method better suited for learn-
ing about the population parameter(s) of interest, choosing sample
size with the AIPE approach may well help promote better scientific
practice.

DISCUSSION

The AIPE approach to sample-size planning is not as well devel-
oped at this time as the power analytic approach. Some methodologi-
cal works focusing on precise estimates can be found in Table 1. There
is, however, a vast amount of methodological work that has focused on
sample-size planning from the power analytic perspective. Book-
length treatments of statistical power and related topics covering a
wider variety of effects than Table 1 can be found in the following
sources: Cohen (1988), Bausell and Li (2002), Kraemer and Thiemann
(1987), Murphy and Myors (1998), and Lipsey (1990).

A benefit that is not well-known of the AIPE approach to sample-
size planning is that it is generally easier than sample-size planning for
statistical power. Generally speaking, the only unknown value required
to plan sample size from the AIPE perspective is the population model
error variance, although the population effect size also is required for
the power analytic approach.14 Because the AIPE approach is not
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explicitly concerned with the center of the confidence interval, just its
width, knowing the effect size is not an issue. Thus, this “problematic
parameter” (Lipsey, 1990) can generally be avoided in the AIPE
framework.

Sample-size planning for empirical research is very important to
help ensure that a study is worthwhile and that it will meaningfully
contribute to the cumulative knowledge of the scientific enterprise. As
has been illustrated, in the realm of sample-size planning there are
essentially two paradigms at work, the predominant one that empha-
sizes statistical power and another that emphasizes the accuracy of
parameter estimates. Ideally the two approaches should not be thought
of as independent of one another. We believe that in general the ideal
research scenario is one in which a researcher carefully plans his or
her study, and in this planning stage, a power analysis and AIPE analy-
sis are conducted in accord with the researcher’s questions and goals.
If the AIPE approach dictates a larger sample size than the power ana-
lytic approach, the sample size for precise estimates should be used.
Conversely, if the power analytic approach reveals that the appropriate
sample size is larger than that obtained from the AIPE approach, then
the estimate from the power analytic approach should be used. Of
course, as Figure 3 shows, it may be the case that the two methods
require dramatically different sample sizes. In such a case, a researcher
must decide which method yields the most appropriate sample size
given the goals and resources available. In these situations, by per-
forming sample-size planning from both methods, the researcher will
have an a priori idea of what to expect at the completion of the study. In
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TABLE 1
Table of Selected Methodological Works That Propose Procedures

for Estimating Sample Size for a Desired Confidence Interval Width

Work Effect

Algina and Olejnik (2000) Squared multiple correlation coefficients
Bonett and Wright (2000) Pearson, Kendall, and Spearman correlation

coefficients
Darlington (1990) Lower bound of the multiple correlation coefficient
Hahn and Meeker (1991, chap. 8) Mean, variance, binomial proportion, Poisson

occurrence rate
Kelley and Maxwell (in press) Regression coefficients
Kelley, Maxwell, and Rausch Difference between a two-group mean comparison

(this article)



this sense, the obtained level of statistical significance and the likely
precision of the estimate should not come as a surprise.

APPENDIX A
Illustrations of “Hand” Calculations for n and nM

Iterative Procedure for n

The following calculations illustrate the calculation ofn “by hand” using
the tabled values of at distribution. Continuing in the spirit of the Illustrative
Example section, we will suppose that a researcher would like to calculate a
95% confidence interval for the difference between two-group means, where
σ is presumed to equal 20. The desired half width of the confidence interval is
10. The procedure begins by calculating an initial sample size starting with
the critical value from the standard normal distribution. After the initial sam-
ple size has been obtained, each successive iteration uses then from the previ-
ous iteration for the critical value of at distribution. The iterations continue
until there are two consecutive iterations that yield the same value ofn.

Starting Sample Size

2(202)(1.959964/10)2 = 30.73167, rounded = 31
(Uses criticalz value.)

Iteration 1

2(202)(2.000298/10)2 = 32.00953, rounded = 33
(Uses criticalt value based on 2 * 31 – 2 = 60 degrees of freedom.)

Iteration 2

2(202)(1.99773/10)2 = 31.92739, rounded = 32
(Uses criticalt value based on 2 * 33 – 2 = 64 degrees of freedom.)

Iteration 3

2(202)(1.998972/10)2 = 31.9671, rounded = 32
(Uses criticalt value based on 2 * 32 – 2 = 62 degrees of freedom.)
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Thus, the estimated per group sample size such that the expected value of
w is 10 (givenσ of 20), is 32 (N = 64).

Iterative Procedure for nM

As with n, the procedure fornM begins with use of the critical value from
the standard normal distribution. The only change in planningnM rather than
n is that the critical value from aχ2 distribution is used (and divided by its de-
grees of freedom in order for there to be a .80 probability of obtaining a confi-
dence interval no larger than 10), starting at the second step of the procedure.
The following “hand” calculations illustrate an application of equation 5.

Starting Sample Size

2(202)(1.959964/10)2 = 30.73167, rounded = 31
(Critical z value.)

Iteration 1

2(202)(2.000298/10)2(68.97207)/(62 – 2) = 36.79606, rounded = 37
(Critical values based on 2 * 31 – 2 = 60 degrees of freedom.)

Iteration 2

2(202)(1.993464/10)2(81.85659)/(74 – 2) = 36.14329, rounded = 37
(Critical values based on 2 * 37 – 2 = 72 degrees of freedom.)

Thus, the estimated per group sample size such that there is there 80%
confidence that the obtainedw will be less than 10 (givenσ of 20), is 37 (N =
74).

APPENDIX B
Computational Procedure for Finding n and nM Iteratively

The following code can be used in the computer programs S-Plus and R.
The user must specify the population standard deviation (sigma), the desired
confidence interval half width (w), Type I error rate (alpha; 1 – confidence
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level), and, fornM, the probability of not obtaining aw less than or equal to the
specified value (gamma; 1 – degree of assurance) for the particular problem.

Specification Values

sigma <- 20

# Population standard deviation

w <- 10

# Desired half width

alpha <- .05

# Type I error rate

gamma <- .2

# Degree of uncertainty for modified n

Iterative Procedure for n

n <- 2*((qnorm(1-alpha/2)*sigma)/w)^2

# Starting value for n (Uses z instead of t).

tol <- .0000001

# Convergence Criteria

dif <- tol + 1

while (dif > tol)

# The while loop stops when the diff is less than tol.

{

previous.n <- n

# Redefines current n as the previous n for the next iteration.

n <- 2*((qt(1-alpha/2, 2*n-2)*sigma)/w)^2

# Equation for n

dif <- abs(n - previous.n)

}

Per.Group.n <- ceiling(n)

Per.Group.n

Iterative Procedure for nM

n <- 2*((qnorm(1-alpha/2)*sigma)/w)^2

# Starting value for n (Uses z instead of t).

tol <- .0000001

# Convergence Criteria

dif <- tol + 1

while (dif < tol)

# The while loop stops when the diff is less than tol.

{

previous.n <- n

# Redefines current n as the previous n for the next iteration.
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n <- 2*((qt(1-alpha/2, 2*n-2)*sigma)/w)^2*(qchisq(1-gamma, 2*n-2)/

(2*n-2))

# Equation for modified n

dif <- abs(n -previous.n)

}

Per.Group.Modified.n <- ceiling(n)

Per.Group.Modified.n

NOTES

1. Power = 1 –β, whereβ is the probability of failing to reject an incorrect null hypothesis. A
Type II error is sometimes referred to as a beta error or as an error of the second kind.

2. Often it is said that power is made up of three factors rather than the four we have stated.
The reason for this apparent inconsistency is because many authors define “effect size” as the
population standardized effect size. The population standardized effect size is a function of both
the population effect size as well as the population model error variance. In either case, both the
size of the population effect and the population model error variance of the effect are required.
Throughout the article, the effect size referred to will be the unstandardized (raw score) effect
size.

3. Directionality in this sense is typically of interest not just with a directional significance
test or a one-sided confidence interval but also a nondirectional test of a two-sided confidence
interval.

4. There are some exceptions to interpreting directionality in statistical tests where there are
multiple degrees of freedom. One such exception is when a ratio of two independent variances is
formed. In the case of such anF ratio, the test statistic will be greater or less than 1 depending on
whether the larger variance is in the numerator or denominator of the ratio. Directionality in this
sense can be conceptualized as the comparison of the variances in order to detect if one is signifi-
cantly larger (or smaller) than the other.

5. It is not always clear what constitutes a “trivial” effect size. For example, the 1988 Physi-
cian’s Aspirin Study, a study where approximately 22,000 physicians were randomly assigned to
group in double-blind fashion, was cut short because it was determined to be unethical to “with-
hold” treatment (aspirin) from those in the control group who were taking a placebo. The ethical
problems arose because aspirin was shown to reduce heart attacks and thus death (Steering Com-
mittee of the Physician’s Health Study Research Group, 1988). The effect size in this situation
was not large by typical standards. In fact, the effect size in this study (r2 = .0011) was approxi-
mately 10 times smaller than Cohen’s definition of a small correlation squared (Cohen, 1988,
section 3.2). The importance of the effect to society, however, was quite large; 1.71% of those in
the placebo group had heart attacks, whereas only 0.94% had heart attacks in the aspirin group
(Rosenthal, 1990). Thus, approximately 82% more heart attacks occurred in the group not
receiving aspirin.

6. Generally speaking, when methodologists argue for the reporting of effect sizes and their
corresponding confidence intervals, they typically use a two-group mean comparison as an
example. In this case, it is hard to argue against the use of Cohen’sd and a confidence interval
around the population value (but see Lenth, 2001, for an exception). However, most research
questions involve more than two groups, oftentimes with multiple degrees of freedom in the
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numerator of the correspondingF test. Although it is often for pedagogical reasons that authors
illustrate the importance of effect size measures and their confidence intervals for two-group
problems, beyond the two-group case effect sizes often lose their appeal because many times
they fail to provide useful information in the absence of significance tests. However, it is typi-
cally a good idea to examine subsets of the overall omnibus test, and in so doing, effect sizes
often provide valuable information, as do confidence intervals around them.

7. We recommended a sensitivity analysis whenever planning sample size, as it is generally
unreasonable to assume the population parameters are known exactly. A sensitivity analysis
examines the relationship between required sample size and the input population effect size and
the model error variance (holding the Type I error rate constant). We believe, however, that a sen-
sitivity analysis can be conceptualized in two different ways. The first conceptualization exam-
ines the required sample size given a range of input population parameters. The second concep-
tualization holds constant the planned sample size (obtained from the assumed effect size and
model error variance for a desired degree of power and/or precision) and then examines the
actual power and/or the expected precision given that the true population effect size and/or vari-
ance deviates from the input values.

8. Although the introductory example reported a confidence interval around the population
standardized effect size, the procedures that follow for sample-size calculation are developed for
unstandardized effect sizes. Standardized effect sizes present computational difficulties because
such confidence intervals require the use of noncentral distributions (Hedges & Olkin, 1985;
Steiger & Fouladi, 1997).

9. Comparing statistical power of .50 and heads on a coin flip is actually an unfair compari-
son. Statistical power should always be compared when the Type I error rate is held constant. For
example, if the null hypothesis were really true, the Type I error rate for the hypothesis test would
beα, while it would be .50 for the coin flip.

10. Although many behavioral scientists regard Type I errors as more serious than Type II
errors, a toxicologist or bioscientist working with substances that are potentially harmful may
argue that a Type II error can be worse, because concluding that there is “no effect” on a noxious
substance could be a harmful or even fatal mistake under certain situations.

11. A reviewer pointed out that although the procedure we present for estimatingnyields an
exact solution, sample size forn can be found using a simple approximation that yields results
generally consistent with the exact method. Solving forn from the approximate critical value
discussed in Schouten (1999, p. 89; see also, Guenther, 1981) fort(1 –α/2; 2n– 2)yields the follow-
ing formulation for an effective approximation of planned sample size for AIPE,
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wherez(1 – α/2) is the critical value from the standard normal distribution at the 1 –α/2 level.
Unfortunately such a simple approximation does not extend tonM, which we discuss later.

12. Note that implicit in equation 4 is aγof approximately .5. Because the distribution of the
sample variance is positively skewed, theγ implicit in equation 4 is not literally .5.

13. The probability of .85 (actually .848) is obtained by following the probabilistic rules gov-
erning the union of a set of events. Because the five tests are orthogonal, they are independent by
definition. The probability of one of the five tests being significant is carried out in the present
situation by adding all of the individual probabilities, subtracting out the product of the individ-
ual probabilities for all two-way combinations, adding the product of the individual probabilities
for all three-way combinations, subtracting the product of the individual probabilities for all
four-way combinations, and by adding the product of the individual probability for the five-way
combinations (Ross, 2002, p. 34).
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14. This statement is correct only when the variance of the effect and the effect size itself are
independent. For the majority of cases this is true, however, when the variance is a function of the
effect size, knowing the variance implies the effect size is itself known and vice versa. For exam-
ple, the asymptotic variance of the correlation coefficient is

( )1
1 2

2

N
−ρ ,

whereρ is the population correlation coefficient andN is the total number of pairs of observa-
tions (Stuart & Ord, 1994). This illustrates a case where the effect and the variance are not inde-
pendent. In these cases, only one of the two parameters is required and both the power analytic
and AIPE approach require only one unknown population parameter.
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