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4 September 17, 2009: Due September 24, 2009

Problem 4.1 Fix the interval [0, 1] and the inner product

(f, g) =
∫ 1

0
f(x)g(x)dx

on the vector space P10 of polynomials with real coefficients of degree at most
ten.

1. What is the dimension of P10?
11 since there is a one-to-one and onto correspondence between
the vectors (a0, . . . , a10) and the polynomials s0 + a1x + . . . +
anxn.

2. Compute and graph the polynomial p10(x) of degree ten that is orthog-
onal to all polynomials of degree at most nine.
See Hmwk4.doc on the class website.

3. Compute the weights for the Gaussian integration methods with weights
at the roots of p10(x).
See Hmwk4.doc on the class website.

Problem 4.2 On an interval [a, b], let f(x) and Simp(f, a, b, n) be as in
Problem 3.2.

1. Compute the sixth order integration rule arising from Romberg inte-
gration

16Simp(f, a, b, 2)− Simp(f, a, b, 1)
15

.

See Hmwk4.doc on the class website.



2. The above is an integration method having nodes a + jh with h = b−a
4

and j = 0, 1, 2, 3, 4. Compute the Newton-Cotes rule with these nodes
and verify the two rules are different.
See Hmwk4.doc on the class website.

Problem 4.3 Do problems 3.3.1 and 3.3.7 in the lecture notes. Come and
see me if you had difficulty with this problem.

3 September 10, 2009: Due September 17, 2009

See rungeErrorControl.doc on the class website.

Problem 3.1 Fix an interval [a, b] and a function f ∈ C2[a, b]. The com-
posite trapezoid rule for the points xi = a + i(b − a)/n with i = 0, . . . , n
is

trap(f, a, b, n) =


f (a) + 2

n−1∑

j=1

f

(
a +

j (b− a)
n

)
+ f (b)




(
b− a

2n

)

The Runge method of error control asserts that for f as above with f (2)(x)
not changing too fast

|trap(f, a,b, n)− trap(f, a,b, 2n)|
3

is close to the error
∣∣∣∣∣
∫ b

a
f(x)dx− trap(f, a, b, 2n)

∣∣∣∣∣ .

In particular, this should be true for all sufficiently large n.

Compare
|trap(f, a, b,n)− trap(f, a, b, 2n)|

3
and

∣∣∣∣∣
∫ b

a
f(x)dx− trap(f, a, b, 2n)

∣∣∣∣∣
for f(x) = sin(x), a = 0, b = π, and n from 1 to 10.

Problem 3.2 For the composite Simpson rule

Simp(f, a, b, n) =


f(a) + f(b) + 2

n−1∑

j=1

f(xj) + 4
n∑

j=1

f(yj)




(
b− a

6n

)
,

with xj = a+ j(b−a)
n and yj = a+ (2j−1)(b−a)

2n , make the analogous comparison
of

|Simp(f, a,b, n)− Simp(f, a,b, 2n)|
15
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and ∣∣∣∣∣
∫ b

a
f(x)dx− Simp(f, a, b, 2n)

∣∣∣∣∣

using f(x) = sin(x), a = 0, b = π, and n from 1 to 10.

2 September 3, 2009: Due September 10, 2009

Problem 2.1 Given a function f(x) ∈ C4[a, b], write down the integration
rule f(x) → I(f) obtained by using

I(f) :=
∫ b

a
p3(x)dx

to approximate ∫ b

a
f(x)dx,

where p3(x) is the polynomial of degree ≤ 3 such that p(a) = f(a), p′(a) =
f ′(a), p(b) = f(b), p′(b) = f ′(b).

Show that
∣∣∣∣∣

∣∣∣∣∣
∫ b

a
f(x)dx− I(f)

∣∣∣∣∣

∣∣∣∣∣ :=

∣∣∣∣∣
∫ b

a
f(x)dx− I(f)

∣∣∣∣∣ ≤
max[a,b] |f (4)(x)|

720
(b− a)5.

Problem 2.2 Given a function f(x) ∈ C2[−1, 1], write down the integra-
tion rule f(x) → I(f) obtained by using

I(f) :=
∫ 1

−1
p1(x)dx

to approximate ∫ 1

−1
f(x)dx,

where p1(x) is the polynomial of degree at most one such that p

(
− 1√

3

)
=

f

(
− 1√

3

)
and p

(
1√
3

)
= f

(
1√
3

)
.

Show that if g(x) is a polynomial of degree at most three, then

∫ 1

−1
g(x)dx = g

(
− 1√

3

)
+ g

(
1√
3

)
.
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1 August 27, 2009: Due September 3, 2009

Problem 1.1

1. Using 3 digit arithmetic compute (1.3 + 0.004) + 0.004. What is the
absolute and relative error?
Answer: (1.3+0.004)+0.004 = 1.304+0.004 = 1.30+0.004 = 1.30.
The absolute and relative errors are 0.008 and 0.008

1.308 ≈ 0.006
respectively.

2. Using 3 digit arithmetic with rounding compute 1.3 + (0.004 + 0.004).
What is the absolute and relative error?
Answer: 1.3 + (0.004 + 0.004) = 1.3 + 0.008 = 1.308 = 1.31. The
absolute and relative errors are 0.002 and 0.002

1.308 ≈ 0.0015 re-
spectively.

Problem 1.2 Remember “rounding to even.”

1. Using 3 digit arithmetic compute (1.3 + 0.005) + 0.005.
Answer: 1.3.

2. Using 3 digit arithmetic with rounding compute 1.3 + (0.005 + 0.005).
Answer: 1.3.

3. Using 3 digit arithmetic with rounding compute (1.31+0.005)+0.005.
Answer: 1.32.

4. Using 3 digit arithmetic with rounding compute 1.31+(0.005+0.005).
(1.31 + 0.005) + 0.005.
Answer: 1.32.

Problem 1.3 Write down a Newton form of the unique interpolating poly-
nomial p(x) of degree ≤ 3 such that p(1) = 2, p(2) = 5, p(3) = 10, p(4) = 17.
Compute this by hand giving details.
Answer (without the work): 2 + 3(x− 1) + (x− 1)(x− 2).

Problem 1.4 Plot on the same graph:

1. the function f(x) :=
1

1 + 25x2
on [−1, 1]; and

2. the interpolation polynomial p5(x) of degree ≤ 5 with p(xi) = f(xi) for
xi = −1 + 0.4i for i = 0, . . . , 5.
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Do this a second time with p12(x) in place of p5(x) xi = −1 + i
6 for i =

0, . . . , 12.
Answer: See the Maple Worksheet: RungeFunction.mws

Problem 1.5 Let x0, . . . , xn be n + 1 distinct real or complex points. Let

Li(x) := Πj 6=i
x− xj

xi − xj

be the ith Lagrange polynomial of degree ≤ n for these points, i.e., the unique
interpolation polynomial of degree ≤ n such that Li(xk) = 0 for i 6= k and

= 1 for i = k. Prove that
n∑

i=0

Li(x) = 1.

Answer: Note that
∑n

i=0 Li(x) is degree at most n and equals 1 at
x0, . . . , xn. Thus by uniqueness it is 1.

You could also approach this via partial fractions. For example,
we know that there are constants c0, . . . , cn such that

1
Πn

i=0(x− xi)
=

n∑

i=0

ci

x− xi
. (1)

Multiplying both sides by x− xi and setting x = xj we see that

1
Πj 6=i(xj − xi)

= ci.

Substitute this in Equation 1 and multiply both sides by

Πn
i=0(x− xi).

This gives the identity we wanted to prove. Note that proving the

partial fraction expansion comes down to the same key point as the

first proof, i.e., the Euclidean algorithm.
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