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‘ Detalls

= Reference on the area up to 2005:

= Andrew Sommese and Charles Wampler,
Numerical solution of systems of polynomials
arising in engineering and science, (2005),
World Scientific Press.

s Recent articles are available at
= Www.nd.edu/~sommese
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‘ Case Study: Alt’s Problem

= We follow

C. Wampler, A. Morgan, and A.J. Sommese, Complete
solution of the nine-point path synthesis problem for
four-bar linkages, ASME Journal of Mechanical Design
114 (1992), 153-159.
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‘ Four-bar planar linkages

= A four-bar planar linkage is a planar
quadrilateral with a rotational joint at each
vertex.

= They are useful for converting one type of
motion to another.

= They occur everywhere.
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‘ A simple four-bar

Adjusting
Screw
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‘ More Abstractly

The Four-Bar Linkage

P Path Tracer Point
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‘ How Do Mechanical Engineers Find Mechanisms?

= Pick a few points in the plane (called
precision points)

= Find a coupler curve going through those
poInts

s | unsuitable, start over.
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i—

= Having more choices makes the process
faster.

= By counting constants, there will be no
coupler curves going through more than nine
points.
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‘ Nine Point Path-Synthesis Problem

H. Alt, Zeitschrift fir angewandte Mathematik
und Mechanik, 1923:

= Glven nine points In the plane, find the set of
all four-bar linkages, whose coupler curves
pass through all these points.
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Vv=y-Db
veltj = ye- (b - §))
- yeiej + 61 = b
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i—

We use complex numbers (as Is standard in
this area)

Summing over vectors we have 16 equations
(y-b)e"i = ye'i + 5, -b

(x—a)e" =xe' +5, - a
plus their 16 conjugates
(y-b)e " =ye™ +5,-b

Il
|
Q|

(X-a)e

S
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i—

This gives 8 sets of 4 equations:

(x-a)e"i =xe +5, -a

(y —b)e" = ye'i + 5, —b

in the variables a, b, X, y, a, b, X,y, and
A, 2,0, forjfrom1to8.
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= Multiplying the first and fourth equation and
the second and third equations eliminates the
u’s and the A’s.

= Setting y,=¢ -1and using the relation
yivi+ri+r;=0
= Now replace conjugate variables by new
variables with hats.
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‘ Alt’s System

(3-5)x]y,+|(a-5) 7, +5,(3-%)+5,(a-x)-5,5, =0

1)

|
(b-5)yy;+[(b-5,)9]3; +5,(b-9)+5,(b-y)-55 =0

'Yj"‘?j""Yj?j =0

with j from 1 to 8.
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i—

Note we have 24 equations of which 16 are degree 3 and 8
are degree 2. This would give a total possible number of
solutions, 2°3'° = 11.019. 960, 576—allowing 1 second a path

it would take over 300 years to solve this system.
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‘ Freudenstein and Roth system

Using Cramers rule and substitution we have
what Is essentially the Freudenstein-Roth
system consisting of 8 equations of degree 7.
In 1991, this was impractical to solve:

78 =5,764,801solutions.
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= Newton’s method doesn’t find many solutions:

1991

Freudenstein and Roth used a simple form of
continuation combined with heuristics.

Tsal and Lu using methods introduced by LI, Sauer,
and Yorke found only a small fraction of the
solutions: their method requires starting from
scratch each time the problem is solved for
different parameter values.
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We followed a different route by introducing new variables

n,n,m,m so that n =ax, n=axr, m=>0y., m = Z}y. We group
the variables into 10 groups {7v;.%;}, {x.Z.a,a,n. n},

{y,7.0, b, m.,m} for j =1,...,8. Introducing homogeneous
coordinates into each group, we use Cramer’s rule to
reduce to a system of 12 equations in 12 unknowns: 4
quadrics and 8 quartics. Though the Bézout number is
1,048,576, the 2-homogeneous Bézout number is 286,720,
and there is an involution reducing the work to following

143,360 paths. There is also an order 3 symmetry...
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h Solve by Continuation
All 2-homog. —/i
systems

All 9-point —
systems

)

1

—> “numerical reduction” to test case (done 1 time)

—> synthesis program (many times)
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‘ Summary

e Analytical Reduction

Initial formulation............... ~ 1010
Roth & Freudenstein........ 5,764,801
Our elimination.............. 1,048,576
Multi-homogenization.......... 286,720
Symmetry...coeeeiiinneniennnn. 143,360
e Numerical Reduction
Nondegenerate.................... 4326
Roberts cognates.................. 1442

e Synthesis program tracks 1442 solution
paths.
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