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Details

 Reference on the area up to 2005:
 Andrew Sommese and Charles Wampler, 

Numerical solution of systems of polynomials 
arising in engineering and science, (2005), 
World Scientific Press.

 Recent articles are available at
 www.nd.edu/~sommese
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Case Study: Alt’s Problem

 We follow
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Four-bar planar linkages

 A four-bar planar linkage is a planar 
quadrilateral with a rotational joint at each 
vertex.  

 They are useful for converting one type of 
motion to another. 

 They occur everywhere.
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A simple four-bar
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More Abstractly
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How Do Mechanical Engineers Find Mechanisms?

 Pick a few points in the plane (called 
precision points)

 Find a coupler curve going through those 
points

 If unsuitable, start over.
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 Having more choices makes the process 
faster.

 By counting constants, there will be no 
coupler curves going through more than nine 
points.



1991
9

Nine Point Path-Synthesis Problem

H. Alt, Zeitschrift für angewandte Mathematik 
und Mechanik, 1923:

 Given nine points in the plane, find the set of 
all four-bar linkages, whose coupler curves 
pass through all these points.
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We use complex numbers (as is standard in 
this area)

Summing over vectors we have 16 equations

plus their 16 conjugates

byeeby j
ii jj −+=− δθµ)(

axeeax j
ii jj −+=− δθλ)(

beyeby j
ii jj −+=− −− δθµ)(

aexeax j
ii jj −+=− −− δθλ)(
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This gives 8 sets of 4 equations:

in the variables a, b, x, y,                  and                     
for j from 1 to 8.

byeeby j
ii jj −+=− δθµ)(

axeeax j
ii jj −+=− δθλ)(

beyeby j
ii jj −+=− −− δθµ)(

aexeax j
ii jj −+=− −− δθλ)(

 ,y ,x ,b ,a

jjj ,,λ θµ
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 Multiplying the first and fourth equation and 
the second and third equations eliminates the 
µ’s and the λ’s.

 Setting                and using the relation 

 Now replace conjugate variables by new 
variables with hats. 

1−= ji
j e θγ

0=++ jjjj γγγγ
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Alt’s System

in the 24 variables
with j from 1 to 8.

[ ] [ ] 0δδ - x) -a (δ )x̂ - â(δγ̂ x̂)δ -(a  γ)xδ - â( jjjjjjjj =+++

[ ] [ ] 0δδ -  y)- b(δ )ŷ - b̂(δγ̂ ŷ)δ - (b γ)yδ - b̂( jjjjjjjj =+++

0γ̂γγ̂γ jjjj =++

jj γ̂, γand ŷ ,x̂ ,b̂ ,â  y,x, b, ,a
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Freudenstein and Roth system

Using Cramers rule and substitution we have 
what is essentially the Freudenstein-Roth 
system consisting of 8 equations of degree 7.
In 1991, this was impractical to solve: 

78 = 5,764,801solutions.
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 Newton’s method doesn’t find many solutions:  
Freudenstein and Roth used a simple form of 
continuation combined with heuristics.

 Tsai and Lu using methods introduced by Li, Sauer, 
and Yorke found only a small fraction of the 
solutions: their method requires starting from 
scratch each time the problem is solved for 
different parameter values.
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Solve by Continuation

All 2-homog.
systems

All 9-point
systems

“numerical reduction” to test case (done 1 time)
synthesis program (many times)
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Summary
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