Math 20550 Calculus III (Fall 2018)
Multivariable Calculus

 

Lecture Number Date Section Topic
Lecture 1 Aug 22 12.1 3D coordinates
Tutorial (in tutorial) 23 12.2 Vectors
Lecture 2 24 12.3-4 Dot Product, Cross Product
Lecture 3 27 12.4 Cross Product (finish)
Lecture 4 29 12.5 Lines, Planes
Lecture 5 31 12.5 Planes
Lecture 6 Sep 3 13.1 Vector Functions, Space Curves
Lecture 7 5 13.2 Derivatives, Integrals
Lecture 8 7 13.3 Arc Length (No Curvature), TNB frame
Lecture 9 10 13.4 Motion in Space
Lecture 10 12 14.1 Functions of Several Variables
Lecture 11 14 14.12-3 Limits, Continuity, Partial Derivatives
Lecture 12 17 Instructor's Choice
Exam 1 18 Exam 1
Lecture 13 19 14.3 Partial Derivatives
Tutorial (in tutorial) 20 14.5 Chain Rule
Lecture 14 21 14.6 Directional Derivatives, Gradients
Lecture 15 24 14.6 Gradients, Tangent Planes, Normal Lines
Lecture 16 26 14.7 Local Maxima, Local Minima, Saddle Points
Lecture 17 28 14.7 Maxima and Minima on Bounded Regions
Lecture 18 Oct 1 14.8 Lagrange Multipliers (one constraint)
Lecture 19 3 14.8 Lagrange Multipliers (two constraints)
Lecture 20 5 15.1 Double Integrals over Rectangles
Lecture 21 8 15.2 Double Integrals over General Regions
Lecture 22 10 15.3 Polar Coordinates
Lecture 23 12 15.4 Mass, Centers of Mass, and Moments
Fall Break 13-20 Fall Break
Lecture 24 22 15.6 Triple Integrals
Lecture 25 24 Instructor's Choice
Exam 2 25 Exam 2
Lecture 26 26 15.7 Triple Integrals in Cylindrical Coordinates
Lecture 27 29 15.8 Triple Integrals in Spherical Coordinates
Lecture 28 31 15.9 Change of Variables in Multiple Integrals
Lecture 29 Nov 2 16.2 Line Integrals of Functions
Lecture 30 5 16.1-2 Vector Fields, Line Integrals
Lecture 31 7 16.3 Fundamental Theorem of Line Integrals
Lecture 32 9 16.4 Green's Theorem
Lecture 33 12 16.5 Curl, Divergence
Lecture 34 14 Instructor's Choice
Exam 3 15 Exam 3
Lecture 35 16 16.6 Parametric Surfaces
Lecture 36 19 16.6 Parametric Surfaces, Tangent Planes, Area
Thanksgiving 21 Thanksgiving Holiday
Thanksgiving 23 Thanksgiving Holiday
Lecture 37 26 16.7 Surface Integrals, Flux Integrals
Lecture 38 28 16.7-8 Flux Integrals, Stokes' Theorem
Lecture 39 30 16.8 Stokes' Theorem
Lecture 40 Dec 3 16.9 Divergence Theorem
Lecture 41 5 Review
Final Exam Dec 12 (Wednesday) Final Exam

The design of this webpage is based on the MIT course web page template.