Home Page

These are the lectures used (Pilkington's section) for Fall 2013.

Mathematica Files

You can download zipped Mathematica Files with Firefox, to use Mathematica files, you will need to download the student version of Mathematica from the OIT website (under downloads). Make sure you evaluate the notebook before viewing, (under Evaluation in the drop down menu).

You will find video tutorials to help you get started with Mathematica on the Wolfram website under

Hands on Start to Mathematica

You will also find lots of specialized tutorials under the

Mathematica Learning Center

 

-------------------------------------

 

1. Review Precalculus

Lecture 1 Mathematica Files

Solutions Lecture 1

--------------

2. Tangents

Lecture 2 Mathematica Files

Solutions Lecture 2

-----------------

3. Limits

Lecture 3 Mathematica Files

-----------------

4. Laws of Limits

-------------------

5. Continuity

Lecture 5 Mathematica Files

-------------------

6. Derivatives

Lectures 5_6 Mathematica Files

Solutions Lectures 5 and 6

-------------------

7. Derivatives as functions

Lecture 7 Mathematica Files

Solutions Lecture 7

-------------------

8. Differentiation Formulas

Solutions Lecture 8

-------------------

9. Trigonometric Functions

-------------------

10. Chain Rule

-------------------

11. Implicit Differentiation

-------------------

12. Applications of the Rate of change

Lecture 12 Mathematica File

-------------------

13. Related Rates

-------------------

14. Linear Approximation

Lecture 14 Mathematica File

-------------------

15. Maxima and Minima

-------------------

16. The Mean Value Theorem

-------------------

17/18 Derivatives and Graphs

-------------------

19. Limits at Infinity

-------------------

20. Summary of Curve Sketching

-------------------

21. Optimization

-------------------

22. Newton's Method

-------------------

23. Antiderivatives

-------------------

24. Areas and Distances

-------------------

25. The Definite Integral

-------------------

26. The Fundamental Theorem of calculus

-------------------

27. Indefinite Integrals and the Fundamental Theorem

-------------------

28. The Method of Substitution

-------------------

29. Area Between Curves

-------------------

30. Volumes Disks and washers

-------------------

31. Volumes Cylindrical Shells

-------------------

32. Work

-------------------

33. Mean Value Theorem for Integrals

-------------------