Home Page
These are the lectures used (Pilkington's section) for Fall 2013.
Mathematica Files
You can download zipped Mathematica Files with Firefox, to use Mathematica files, you will need to download the student version of Mathematica from the OIT website (under downloads). Make sure you evaluate the notebook before viewing, (under Evaluation in the drop down menu).
You will find video tutorials to help you get started with Mathematica on the Wolfram website under
You will also find lots of specialized tutorials under the
-------------------------------------
1. Review Precalculus
Lecture 1 Mathematica Files
--------------
2. Tangents
Lecture 2 Mathematica Files
-----------------
3. Limits
Lecture 3 Mathematica Files
-----------------
4. Laws of Limits
-------------------
5. Continuity
Lecture 5 Mathematica Files
-------------------
6. Derivatives
Lectures 5_6 Mathematica Files
-------------------
7. Derivatives as functions
-------------------
8. Differentiation Formulas
-------------------
9. Trigonometric Functions
-------------------
10. Chain Rule
-------------------
11. Implicit Differentiation
-------------------
12. Applications of the Rate of change
-------------------
13. Related Rates
-------------------
14. Linear Approximation
-------------------
15. Maxima and Minima
-------------------
16. The Mean Value Theorem
-------------------
17/18 Derivatives and Graphs
-------------------
19. Limits at Infinity
-------------------
20. Summary of Curve Sketching
-------------------
21. Optimization
-------------------
22. Newton's Method
-------------------
23. Antiderivatives
-------------------
24. Areas and Distances
-------------------
25. The Definite Integral
-------------------
26. The Fundamental Theorem of calculus
-------------------
27. Indefinite Integrals and the Fundamental Theorem
-------------------
28. The Method of Substitution
-------------------
29. Area Between Curves
-------------------
30. Volumes Disks and washers
-------------------
31. Volumes Cylindrical Shells
-------------------
32. Work
-------------------
33. Mean Value Theorem for Integrals
-------------------