The goal of this course is to highlight elementary design principles inherent in biology. Many of the underlying principles governing biochemical reactions in a living cell can be related to network circuit motifs with multiple inputs/outputs, feedback and feedforward. This course draws on control theory and elementary biology to provide a mathematical framework to understand biological networks. The topics examined in the course are drawn from current research and include: transcription networks, stochastic gene induction, adaptation, oscillators (circadian rhythms), riboswitches, plasticity, metabolism, pattern development and cancer. The course is intended for advanced undergraduates and graduate students.
This course on advanced quantum mechanics will start with a review of basic quantum mechanics. The Dirac operator formalism will be developed and used for perturbation theory. Perturbation theory will be applied to light-matter interaction and transport problems ranging from drift-diffusion, tunneling, and ballistic transport. Green's function approaches will be introduced to understand open quantum systems, and in particular semiconductor devices. Going beyond the perturbation picture, field quantization and Feynman diagram approaches will be described for semiconductor phenomena involving excitons, polarons, polaritons, and similar field excitations. Electron-electron interaction effects, and metal-insulator transitions will be discussed as many-body problems. The course will end with a study of the increasingly important and relevant geometrical and topological aspects of semiconductor physics. The topics covered will be the manifestation of the geometric Berry phase in polar semiconductors, to Chern numbers and the quantum Hall effects. The natural extension to topological insulators, and the recent interest in Majorana Fermions will round off the course.
In this course, Maxwell's equations are applied to practical problems encountered in the design of digital electronics, communications networks, and photonics. With currents and charges as the sources of electromagnetic fields, the solutions to Maxwell's equations are pursued, subject to boundary conditions, using vector calculus, Green's function techniques and numerical simulation. The analysis of scattering of fields at normal and oblique incidence from dielectric and metal interfaces and inhomogeneous media (particles) including polarization effects provides insight into the design of devices. Subsequently, devices such as lossless and lossy transmission lines, strip-lines, metal and dielectric waveguides and cavities, optical fiber, antennas ranging from infinitesimal to linear (narrowband) to bi-conical (broadband) geometries, photonic devices such as dielectric mirrors and Fabry Perot resonators are all analyzed and strategies for their design are offered. Some of the tools the student will exercise include Smith Charts, numerical simulation, modal analysis, Bode-Fano criterion, and impedance matching techniques including quarter wave, binomial, Chebyshev transformers, single and double stub tuning. Techniques for characterization using scattering parameters will be illustrated, and the estimation of input and output scattering coefficients will also be described. This class is intended for advanced undergraduates and graduate students.
This is a graduate-level lab course treating the practical aspects of design and testing of nanometer-scale, MOS circuit technology. Emphasis is placed on process integration and the interrelationship between the process flow and device/circuit performance. The class provides experience with state-of-the-art, process and device simulation tools; nanostructure characterization using atomic force and transmission electron microscopies; and capacitance, conductance and scattering parameter measurements used to extract parameters for circuit models.
This is an undergraduate-level course which describes the general plane wave solutions of Maxwell's equations; reflection and transmission of plane waves; transmission lines; impedance matching; waveguides and cavities; and radiation.
This is a first course in semiconductor physics, devices and circuits. It is intended for undergraduate juniors. The primary objective is to develop the foundation in semiconductor physics required to analyze the operation of semiconductor devices such as p-n junctions, metal-oxide-semiconductor capacitors, and field effect transistors. These concepts are then applied to the design of amplifiers and elementary integrated circuits.
This is a required junior/senior level undergraduate course in the Electrical Engineering core curriculum devoted to the operating principals of solid-state electronic devices such as the diode, the transistor and the light-emitting diode. The goals of the course are to provide the student with basic background on semiconductor materials and device physics.