Math 20550 Calculus III (Spring 2020)
Multivariable Calculus

 

COVID-19 UPDATE Students will view video lecture for section PRIOR to zoom class meetings. There are available at http://sites.nd.edu/math-digital-resources/calculus-iii-20550-digital-resources/
Lecture Number Date Section Topic
Lecture 1 Jan 15 12.1 3D coordinates
Tutorial (in tutorial) 16 12.2 Vectors
Lecture 2 17 12.3-4 Dot Product, Cross Product
Lecture 3 20 No Class (Martin Luther King Jr. Day)
Lecture 4 22 12.4 Cross Product (finish)
Lecture 5 24 12.5 Lines, Planes
Lecture 6 27 12.5 Planes
Lecture 7 29 13.1 Vector Functions, Space Curves
Lecture 7 31 13.2 Derivatives, Integrals
Lecture 8 Feb. 3 13.3 Arc Length (No Curvature), TNB frame
Lecture 9 5 13.4 Motion in Space
Lecture 10 7 14.1 Functions of Several Variables
Lecture 11 10 14.2-3 Limits, Continuity, Partial Derivatives
Lecture 12 12 14.3 Partial Derivatives
Lecture 13 14 14.5 Chain Rule
Lecture 14 17 Instructor's Choice
Exam 1 18 Exam 1
Lecture 15 19 14.6 Directional Derivatives, Gradients
Tutorial (in tutorial) 20 14.6 Gradients,Tangent Planes, Normal Lines
Lecture 16 21 14.7 Local Maxima, Local Minima, Saddle Points
Lecture 17 24 14.7 Maxima and Minima on Bounded Regions
Lecture 18 26 14.8 Lagrange Multipliers (one constraint)
Lecture 19 28 14.8 Lagrange Multipliers (two constraints)
Lecture 20 Mar. 2 15.1 Double Integrals over Rectangles
Lecture 21 4 15.2 Double Integrals over General Regions
Lecture 22 6 15.3 Polar Coordinates
Spring Break 7-22 Spring Break (extended due to COVID-19)
Lecture 24 23 15.6 Triple Integrals
Lecture 25 25 15.7 Triple Integrals in Cylindrical Coordinates
Lecture 26 27 15.8 Triple Integrals in Spherical Coordinates
Lecture 27 30 15.9 Change of Variables in Multiple Integrals
Exam 2 31 Exam 2 (online) - 5:00-6-15 pm ET
Lecture 28 Apr. 1 16.2 Line Integrals of Functions
Lecture 29 3 16.1-2 Vector Fields, Line Integrals
Lecture 30 6 16.3 Fundamental Theorem of Line Integrals
Lecture 31 8 16.4 Green's Theorem
Good Friday 10 Easter Holiday
Easter Monday 13 Easter Holiday
Lecture 32 15 16.5 Curl, Divergence
Lecture 33 17 16.6 Parametric Surfaces
Lecture 34 20 16.6 Parametric Surfaces, Tangent Planes, Area
Exam 3 21 Exam 3 (online) 5:00-6:15pm ET
Lecture 35 22 16.7 Surface Integrals, Flux Integrals
Lecture 37 24 16.7-8 Flux Integrals, Stokes' Theorem
Lecture 38 27 16.8 Stokes' Theorem
Lecture 39 29 16.9 Divergence Theorem
Reading Days Apr. 30-May 3 Reading Days
Final Exam May 7 Final Exam: 1:45-3:45pm ET (online)

The design of this webpage is based on the MIT course web page template.