Math 20550 Calculus III (Spring 2016)
Multivariable Calculus

 

Lecture Number Date Section Topic
Lecture 1 Jan 13 12.1 3D coordinates
Tutorial (in tutorial) 14 12.2 Vectors
Lecture 2 15 12.3-4 Dot Product, Cross Product
Lecture 3 18 12.4 Cross Product (finish)
Lecture 4 20 12.5 Lines, Planes
Lecture 5 22 12.5 Planes
Lecture 6 25 13.1 Vector Functions, Space Curves
Lecture 7 27 13.2 Derivatives, Integrals
Lecture 8 29 13.3 Arc Length
Lecture 9 Feb 1 13.3 Normal and Binormal Vectors
Lecture 10 3 13.4 Motion in Space
Lecture 11 5 14.1 Functions of Several Variables
Lecture 12 8 14.2 Limits, Continuity
Lecture 13 10 14.3 Partial Derivatives
Lecture 14 12 14.5 Chain Rule
Lecture 15 15 Instructor's Choice
Exam 1 16 Exam 1
Lecture 16 17 14.6 Directional Derivatives, Gradients
Tutorial (in tutorial) 18 14.6 Tangent Planes, Normal Lines
Lecture 17 19 14.7 Local Maxima, Local Minima, Saddle Points
Lecture 18 22 14.7 Maxima and Minima on Bounded Regions
Lecture 19 24 14.8 Lagrange Multipliers (one constraint)
Lecture 20 26 14.8 Lagrange Multipliers (two constraints)
Lecture 21 29 15.1 Double Integrals over Rectangles
Lecture 22 Mar 2 15.2-3 Iterated Integrals, General Regions
Lecture 23 4 15.3 Double Integrals over General Regions
Spring Break 5-13 Spring Break
Lecture 24 14 Instructor's Choice
Exam 2 15 Exam 2
Lecture 25 16 15.4 Polar Coordinates
Tutorial (in tutorial) 17 15.5 Mass, Centers of Mass, and Moments
Lecture 26 18 15.7 Triple Integrals
Lecture 27 21 15.8 Triple Integrals in Cylindrical Coordinates
Lecture 28 23 15.9 Triple Integrals in Spherical Coordinates
Good Friday 25 Easter Holiday
Easter Monday 28 Easter Holiday
Lecture 29 30 15.10 Change of Variables in Multiple Integrals
Lecture 30 Apr 1 16.2 Line Integrals of Functions
Lecture 31 4 16.1-2 Vector Fields, Line Integrals
Lecture 32 6 16.3 Fundamental Theorem of Line Integrals
Lecture 33 8 16.4 Green's Theorem
Lecture 34 11 16.5 Curl, Divergence
Lecture 35 13 16.6 Parametric Surfaces, Tangent Planes, Area
Lecture 36 15 16.7 Surface Integrals, Flux Integrals
Lecture 37 18 Instructor's Choice
Exam 3 19 Exam 3
Lecture 38 20 16.8 Flux Integrals, Stokes' Theorem
Lecture 39 22 16.8 Stokes' Theorem
Lecture 40 25 16.9 Divergence Theorem
Lecture 41 27 Review
Final Exam May 6 Final Exam

The design of this webpage is based on the MIT course web page template.