Math 20550 Calculus III (Spring 2018)
Multivariable Calculus

 

Lecture Number Date Section Topic
Lecture 1 Jan 17 12.1 3D coordinates
Tutorial (in tutorial) 18 12.2 Vectors
Lecture 2 19 12.3-4 Dot Product, Cross Product
Lecture 3 22 MLK Celebration
Lecture 4 24 12.4 Cross Product (finish)
Tutorial (in tutorial) 25 12.5 Lines, Planes
Lecture 5 26 12.5 Planes
Lecture 6 29 13.1 Vector Functions, Space Curves
Lecture 7 31 13.2 Derivatives, Integrals
Lecture 8 Feb 2 13.3 Arc Length (No Curvature), TNB frame
Lecture 9 5 13.4 Motion in Space
Lecture 10 7 14.1 Functions of Several Variables
Lecture 11 9 14.2-3 Limits, Continuity, Partial Derivatives
Lecture 12 12 14.3 Partial Derivatives
Lecture 13 14 14.5 Chain Rule
Lecture 14 16 14.6 Directional Derivatives, Gradients
Lecture 15 19 Review
Exam 1 20 Exam 1
Lecture 16 21 14.6 Gradients, Tangent Planes, Normal Lines
Tutorial 22 14.7 Local Maxima, Local Minima, Saddle Points
Lecture 17 23 14.7 Maxima and Minima on Bounded Regions
Lecture 18 26 14.8 Lagrange Multipliers (one constraint)
Lecture 19 28 14.8 Lagrange Multipliers (two constraints)
Lecture 20 Mar 2 15.1 Double Integrals over Rectangles
Lecture 21 5 15.2 Double Integrals over General Regions
Lecture 22 7 15.3 Polar Coordinates
Lecture 23 9 15.4 Mass, Centers of Mass, and Moments
Spring Break 12-16 Spring Break
Lecture 24 19 Review
Exam 2 20 Exam 2
Lecture 25 21 15.6 Triple Integrals
Lecture 26 23 15.7 Triple Integrals in Cylindrical Coordinates
Lecture 27 26 15.8 Triple Integrals in Spherical Coordinates
Lecture 28 28 15.9 Change of Variables in Multiple Integrals
Easter 30 Easter
Easter Apr 2 Easter
Lecture 29 4 16.2 Line Integrals of Functions
Lecture 30 6 16.1-2 Vector Fields, Line Integrals
Lecture 31 9 16.3 Fundamental Theorem of Line Integrals
Lecture 32 11 16.4 Green's Theorem
Lecture 33 13 16.5 Curl, Divergence
Lecture 34 16 16.6 Parametric Surfaces
Lecture 35 18 16.6 Parametric Surfaces, Tangent Planes, Area
Lecture 36 20 16.7 Surface Integrals, Flux Integrals
Lecture 37 23 Review
Exam 3 24 Exam 3
Lecture 38 25 16.7-8 Flux Integrals, Stokes' Theorem
Lecture 39 27 16.8 Stokes' Theorem
Lecture 40 30 16.9 Divergence Theorem
Lecture 41 May 2 Review
Final Exam May 8 (Tuesday) Final Exam

The design of this webpage is based on the MIT course web page template.