Publications
Book chapters:
- Tukovic, Z., Bukac, M., Cardiff, P., Jasak, H., and Ivankovic, A. (2018) Added mass partitioned fluid-structure interaction solver based on a Robin boundary condition for pressure. In OpenFOAM® Selected papers of the 11th Workshop. Springer International Publishing Switzerland.
- Bukac, M., Canic, S. Muha, B., and Glowinski, R. (2016) An Operator Splitting Approach to the Solution of Fluid-Structure Interaction Problems in Hemodynamics. In Splitting Methods in Communication, Imaging, Science, and Engineering. Springer International Publishing Switzerland.
- Canic, S., Muha, B., and Bukac, M. (2014) Fluid–structure interaction in hemodynamics: Modeling, analysis, and numerical simulation. In Fluid-Structure Interaction and Biomedical Applications (pp. 79-195). Springer Basel.
Peer-reviewed publications:
- Parrow, C. and Bukač, M. A Robin-Robin strongly coupled partitioned method for fluid-poroelastic structure interaction. To appear in Journal of Numerical Mathematics.
- Bukač, M., Čanić, S., Muha, B. and Wang, Y. A bioartificial organ scaffold architecture design. To appear in PLOS Computational Biology.
- Kunštek, P., M., Bukač, M., and Muha, B. Mass conservation in the validation of fluid-poroelastic structure interaction solvers. Applied Mathematics and Computation. 487: 129081, 2025.
- Edwards, M., Bukač, M., and Trenchea, C. A second-order partitioned method for bioconvective flows with concentration dependent viscosity. Annals of Mathematical Sciences and Applications. 9 (1): 141-184, 2024.
- Bukač, M., Muha, B. and Salgado, A. J. Analysis of a diffuse interface method for the Stokes-Darcy coupled problem. ESAIM: Mathematical Modelling and Numerical Analysis. 57: 2623-2658, 2023.
- Bukač, M., Fu, G., Seboldt, A. and Trenchea, C. Time-adaptive partitioned method for fluid-structure interaction problems with thick structures. Journal of Computational Physics. 473: 111708, 2023
- Throop, A., Bukač, M. and Zakerzadeh, R. Prediction of wall stress and oxygen flow in patient-specific abdominal aortic aneurysms: the role of intraluminal thrombus. Biomechanics and
Modeling in Mechanobiology. 21(6): 1761-1779, 2022.
- Throop, A., Badr, D., Durka, M., Bukač, M. and Zakerzadeh, R. Analyzing the Effects of Multi- layered Porous Intraluminal Thrombus on Oxygen Flow in Abdominal Aortic Aneurysms. Oxygen. 2(4): 518-536, 2022.
- Wang, Y., Canic, S., Bukač, M., Blaha, C. and Roy, S. Mathematical and Computational Modeling of Poroelastic Cell Scaffolds in the Design of an Implantable Bioartificial Pancreas. Fluids. 7(7): 222, 2022.
- Bukač, M. and Trenchea, C. Adaptive, second-order, unconditionally stable partitioned method for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering. 393: 114847, 2022.
- Bukač, M. and Shadden, S.C. Quantifying the effects of intraluminal thrombi and their poroelastic properties on abdominal aortic aneurysms. Archive of Applied Mechanics. 92: 435–446, 2022.
- Seboldt, A., Oyekole, O., Tambača, J. and Bukač, M. Numerical modeling of the fluid-porohyperelastic structure interaction. SIAM Journal on Scientific Computing. 43(4): A2923–A2948, 2021.
- Canic, S., Wang, Y. and Bukač, M. A Next-Generation Mathematical Model for Drug Eluting Stents. SIAM Journal on Applied Mathematics. 81(4): 1503–1529, 2021.
- Bukač, M. An extension of explicit coupling for fluid-structure interaction problems. Mathematics. 9(15): 1747, 2021
- Seboldt, A. and Bukač, M. A non-iterative domain decomposition method for the interaction between a fluid and a thick structure. Numerical Methods for Partial Differential Equations. 37(4): 2803–2832, 2021.
- Bukač, M. Seboldt, A. and Trenchea, C. Refactorization of Cauchy's method: a second-order partitioned method for fluid-thick structure interaction problems. Journal of Mathematical Fluid Mechanics. 23:64, 2021.
- Bukač, M. and Canic, S. A partitioned numerical scheme for fluid-structure interaction with slip. Mathematical Modelling of Natural Phenomena. 16:(8):1–35, 2021.
- Bukač, M. and Trenchea, C. Boundary update via resolvent for fluid-structure interaction. Journal of Numerical Mathematics. 29(1):1–22, 2021.
- Oyekole, O. and Bukač, M. Second-order, loosely coupled methods for fluid-poroelastic material interaction. Numerical Methods for Partial Differential Equations. 36:800–822, 2020.
- Smodlaka, H., Khamas, W., Jungers, H., Pan, R. Al‐Tikriti, M., Borovac, J., Palmer, L. and Bukač, M. A novel understanding of Phocidae hearing adaptations through a study of northern elephant seal (Mirounga angustirostris) ear anatomy and histology. The Anatomical Record. 302(9):1605–1614, 2019.
- Bukač, M., Canic, S., Tambača, J. and Wang, Y. Fluid–structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: A four stent computational study. Computer Methods in Applied Mechanics and Engineering. 350:679–700, 2019.
- Oyekole, O., Trenchea, C. and Bukač, M. A second-order in time approximation of fluid-structure interaction problem. SIAM Journal on Numerical Analysis. 56(1):590–613, 2018.
- Forti, D., Bukač, M., Quaini, A., Canic, S. and Deparis, S. A monolithic approach to fluid-composite structure interaction. Journal of Scientific Computing. 72(1):396–421, 2017.
- Bukač, M., Yotov, I. and Zunino, P. Dimensional model reduction for flow through fractures in poroelastic media. ESAIM: Mathematical Modelling and Numerical Analysis. 51(4):1429–1471, 2017.
- Bukač, M. and Alber, M. Multi-component model of intramural hematoma. Journal of Biomechanics. 50:42–49, 2017.
- Bukač, M. and Muha, B. Stability and convergence analysis of the extensions of the kinematically coupled scheme for the fluid-structure interaction. SIAM Journal on Numerical Analysis. 54(5):3032–3061, 2016.
- Bukač, M., Canic, S. and Muha, B. A nonlinear fluid-structure interaction problem in compliant arteries treated with vascular stents. Applied Mathematics & Optimization. 73(3):433–473, 2016.
- Bukač, M. A loosely-coupled scheme for the interaction between a fluid, elastic structure and poroelastic material. Journal of Computational Physics. 313:377–399, 2016.
- Zakerzadeh, R., Bukač, M. and Zunino, P. Computational Analysis of Energy Distribution of Coupled Blood Flow and Arterial Deformation. International Journal of Advances in Engineering Sciences and Applied Mathematics. 8(1):70–85, 2016.
- Cao, K., Bukač, M. and Sucosky, P. Three-Dimensional Macro-Scale Assessment of Regional and Temporal Wall Shear Stress Characteristics on Aortic Valve Leaflets. Computer Methods in Biomechanics and Biomedical Engineering. 19(6):603–613, 2016.
- Bukač, M., Layton, W., Moraiti, M., Tran, H. and Trenchea, C. Analysis of partitioned methods for the Biot system. Numerical Methods for Partial Differential Equations. 31(6):1769–1813, 2015.
- M. Bukac, I. Yotov, R. Zakerzadeh, P. Zunino. Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche's coupling approach. Computer Methods in Applied Mechanics and Engineering 292(1):138–170, 2015.
- Bukač, M., Canic, S., and Muha, B. A partitioned scheme for fluid-composite structure interaction problems. Journal of Computational Physics 281:493-517, 2015.
- M. Bukač, I. Yotov, P. Zunino. An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numerical Methods for Partial Differential Equations 31(4):1054–1100, 2015.
- Canic, S., Muha, B., and Bukač, M. Stability of the kinematically coupled beta-scheme for fluid-structure interaction problems in hemodynamics. International Journal of Numerical Analysis and Modeling 12(1):54–80, 2015.
- Mabuza, S., Canic, S., Kuzmin, D., and Bukač, M. A conservative, positivity preserving scheme for reactive solute transport problems in moving domains. Journal of Computational Physics 276:563–595, 2014.
- Bukač, M., Canic, S., Glowinski, R., Muha, B., and Quaini, A. Operator Splitting Scheme for Fluid-Structure Interaction Problems with Thick Structures. International Journal for Numerical Methods in Fluids 74(8):577–604, 2014.
- Bukač, M. and Canic, S. Longitudinal displacement in viscoelastic arteries: a novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences and Engineering 10(2):295-318, 2013.
- Bukač, M., Canic, S., Glowinski, R., Tambaca, J. and Quaini, A. Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement. Journal of Computational Physics 235:515-541, 2013.
Conference proceedings:
- Bukač, M., Yotov, I., Zakerzadeh, R., and Zunino, P. Effects of poroelasticity on fluid-structure interaction in arteries: a computational sensitivity study. Modeling the heart and the circulatory system, in Springer Series in Modeling, Simulation and Applications (MS&A) Vol. 14 (2015), A. Quarteroni (Ed.).