Martina Bukac
  • Home
  • Teaching
  • Research
  • Publications

Publications

Book chapters:
  1. Tukovic, Z., Bukac, M., Cardiff, P., Jasak, H., and Ivankovic, A. (2018) Added mass partitioned fluid-structure interaction solver based on a Robin boundary condition for pressure. In OpenFOAM® Selected papers of the 11th Workshop. Springer International Publishing Switzerland.
  2. Bukac, M., Canic, S. Muha, B., and Glowinski, R. (2016) An Operator Splitting Approach to the Solution of Fluid-Structure Interaction Problems in Hemodynamics. In Splitting Methods in Communication, Imaging, Science, and Engineering. Springer International Publishing Switzerland.
  3. Canic, S., Muha, B., and Bukac, M. (2014) Fluid–structure interaction in hemodynamics: Modeling, analysis, and numerical simulation. In Fluid-Structure Interaction and Biomedical Applications (pp. 79-195). Springer Basel.
Peer-reviewed publications:
  1. Aznaran, F., Bukač, M., Muha, B. and Salgado, A.   Analysis and finite element approximation of a diffuse interface approach to the Stokes-Biot coupling.  To appear in IMA Journal of Numerical Analysis.
  2. Parrow, C. and Bukač, M.   A Robin-Robin strongly coupled partitioned method for fluid-poroelastic structure interaction.  To appear in Journal of Numerical Mathematics.
  3. Kunštek, P., M., Bukač, M., and Muha, B.   Mass conservation in the validation of fluid-poroelastic structure interaction solvers.  Applied Mathematics and Computation. 487: 129081, 2025.
  4. Bukač, M., Čanić, S., Muha, B. and Wang, Y.   A bioartificial organ scaffold architecture design.  PLOS Computational Biology. 20(11): e1012079, 2024.
  5. Edwards, M., Bukač, M., and Trenchea, C.   A second-order partitioned method for bioconvective flows with concentration dependent viscosity.  Annals of Mathematical Sciences and Applications. 9 (1): 141-184, 2024.
  6. Bukač, M., Muha, B. and Salgado, A. J.  Analysis of a diffuse interface method for the Stokes-Darcy coupled problem.  ESAIM: Mathematical Modelling and Numerical Analysis. 57: 2623-2658, 2023.
  7. Bukač, M., Fu, G., Seboldt, A. and Trenchea, C.  Time-adaptive partitioned method for fluid-structure interaction problems with thick structures.  Journal of Computational Physics. 473: 111708, 2023.
  8. Throop, A., Bukač, M. and Zakerzadeh, R.  Prediction of wall stress and oxygen flow in patient-specific abdominal aortic aneurysms: the role of intraluminal thrombus.  Biomechanics and Modeling in Mechanobiology. 21(6): 1761-1779, 2022.
  9. Throop, A., Badr, D., Durka, M., Bukač, M. and Zakerzadeh, R.  Analyzing the Effects of Multi- layered Porous Intraluminal Thrombus on Oxygen Flow in Abdominal Aortic Aneurysms.  Oxygen. 2(4): 518-536, 2022.
  10. Wang, Y., Canic, S., Bukač, M., Blaha, C. and Roy, S.  Mathematical and Computational Modeling of Poroelastic Cell Scaffolds in the Design of an Implantable Bioartificial Pancreas.  Fluids. 7(7): 222, 2022.
  11. Bukač, M. and Trenchea, C.  Adaptive, second-order, unconditionally stable partitioned method for fluid-structure interaction.  Computer Methods in Applied Mechanics and Engineering. 393: 114847, 2022.
  12. Bukač, M. and Shadden, S.C.  Quantifying the effects of intraluminal thrombi and their poroelastic properties on abdominal aortic aneurysms.  Archive of Applied Mechanics. 92: 435–446, 2022.
  13. Seboldt, A., Oyekole, O., Tambača, J. and Bukač, M.   Numerical modeling of the fluid-porohyperelastic structure interaction.  SIAM Journal on Scientific Computing. 43(4): A2923–A2948, 2021.
  14. Canic, S., Wang, Y. and Bukač, M.   A Next-Generation Mathematical Model for Drug Eluting Stents.  SIAM Journal on Applied Mathematics. 81(4): 1503–1529, 2021.
  15. Bukač, M.   An extension of explicit coupling for fluid-structure interaction problems.  Mathematics. 9(15): 1747, 2021
  16. Seboldt, A. and Bukač, M.   A non-iterative domain decomposition method for the interaction between a fluid and a thick structure.  Numerical Methods for Partial Differential Equations. 37(4): 2803–2832, 2021.
  17. Bukač, M. Seboldt, A. and Trenchea, C.   Refactorization of Cauchy's method: a second-order partitioned method for fluid-thick structure interaction problems.  Journal of Mathematical Fluid Mechanics. 23:64, 2021.
  18. Bukač, M. and Canic, S.   A partitioned numerical scheme for fluid-structure interaction with slip.  Mathematical Modelling of Natural Phenomena. 16:(8):1–35, 2021.
  19. Bukač, M. and Trenchea, C.   Boundary update via resolvent for fluid-structure interaction.  Journal of Numerical Mathematics. 29(1):1–22, 2021.
  20. Oyekole, O. and Bukač, M.   Second-order, loosely coupled methods for fluid-poroelastic material interaction.  Numerical Methods for Partial Differential Equations. 36:800–822, 2020.
  21. Smodlaka, H., Khamas, W., Jungers, H., Pan, R. Al‐Tikriti, M., Borovac, J., Palmer, L. and Bukač, M.   A novel understanding of Phocidae hearing adaptations through a study of northern elephant seal (Mirounga angustirostris) ear anatomy and histology.  The Anatomical Record. 302(9):1605–1614, 2019.
  22. Bukač, M., Canic, S., Tambača, J. and Wang, Y.   Fluid–structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: A four stent computational study.  Computer Methods in Applied Mechanics and Engineering. 350:679–700, 2019.
  23. Oyekole, O., Trenchea, C. and Bukač, M.   A second-order in time approximation of fluid-structure interaction problem.  SIAM Journal on Numerical Analysis. 56(1):590–613, 2018.
  24. Forti, D., Bukač, M., Quaini, A., Canic, S. and Deparis, S.   A monolithic approach to fluid-composite structure interaction.  Journal of Scientific Computing. 72(1):396–421, 2017.
  25. Bukač, M., Yotov, I. and Zunino, P.  Dimensional model reduction for flow through fractures in poroelastic media.  ESAIM: Mathematical Modelling and Numerical Analysis. 51(4):1429–1471, 2017.
  26. Bukač, M. and Alber, M.  Multi-component model of intramural hematoma.  Journal of Biomechanics. 50:42–49, 2017.
  27. Bukač, M. and Muha, B.  Stability and convergence analysis of the extensions of the kinematically coupled scheme for the fluid-structure interaction.  SIAM Journal on Numerical Analysis. 54(5):3032–3061, 2016.
  28. Bukač, M., Canic, S. and Muha, B.  A nonlinear fluid-structure interaction problem in compliant arteries treated with vascular stents.  Applied Mathematics & Optimization. 73(3):433–473, 2016.
  29. Bukač, M.  A loosely-coupled scheme for the interaction between a fluid, elastic structure and poroelastic material.  Journal of Computational Physics. 313:377–399, 2016.
  30. Zakerzadeh, R., Bukač, M. and Zunino, P.  Computational Analysis of Energy Distribution of Coupled Blood Flow and Arterial Deformation.  International Journal of Advances in Engineering Sciences and Applied Mathematics. 8(1):70–85, 2016.
  31. Cao, K., Bukač, M. and Sucosky, P.  Three-Dimensional Macro-Scale Assessment of Regional and Temporal Wall Shear Stress Characteristics on Aortic Valve Leaflets.  Computer Methods in Biomechanics and Biomedical Engineering. 19(6):603–613, 2016.
  32. Bukač, M., Layton, W., Moraiti, M., Tran, H. and Trenchea, C.  Analysis of partitioned methods for the Biot system.  Numerical Methods for Partial Differential Equations. 31(6):1769–1813, 2015.
  33. M. Bukac, I. Yotov, R. Zakerzadeh, P. Zunino.  Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche's coupling approach. Computer Methods in Applied Mechanics and Engineering 292(1):138–170, 2015.
  34. Bukač, M., Canic, S., and Muha, B. A partitioned scheme for fluid-composite structure interaction problems. Journal of Computational Physics 281:493-517, 2015.
  35. M. Bukač, I. Yotov, P. Zunino.  An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numerical Methods for Partial Differential Equations 31(4):1054–1100, 2015.
  36. Canic, S., Muha, B., and Bukač, M. Stability of the kinematically coupled beta-scheme for fluid-structure interaction problems in hemodynamics. International Journal of Numerical Analysis and Modeling 12(1):54–80, 2015.
  37. Mabuza, S., Canic, S., Kuzmin, D., and Bukač, M. A conservative, positivity preserving scheme for reactive solute transport problems in moving domains. Journal of Computational Physics 276:563–595, 2014.
  38. Bukač, M., Canic, S., Glowinski, R., Muha, B., and Quaini, A. Operator Splitting Scheme for Fluid-Structure Interaction Problems with Thick Structures. International Journal for Numerical Methods in Fluids 74(8):577–604, 2014.
  39. Bukač, M. and Canic, S. Longitudinal displacement in viscoelastic arteries: a novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences and Engineering 10(2):295-318, 2013.
  40. Bukač, M., Canic, S., Glowinski, R., Tambaca, J. and Quaini, A. Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement. Journal of Computational Physics 235:515-541, 2013.
Conference proceedings:
  1. Bukač, M., Yotov, I., Zakerzadeh, R., and Zunino, P. Effects of poroelasticity on fluid-structure interaction in arteries: a computational sensitivity study.  Modeling the heart and the circulatory system, in Springer Series in Modeling, Simulation and Applications (MS&A) Vol. 14 (2015), A. Quarteroni (Ed.).