[1] R. Smarandache and M. Haenggi, “Bounding the Bethe and the Degree-M Bethe Permanents”, submitted to IEEE Trans. Inform. Theory, May 2016. Online at http://arxiv.org/abs/ 1503.02217.
[2] D. Napp and R. Smarandache, “Constructing strongly-MDS convolutional codes with maximum distance profile”, Advances in Mathematics of Communications AMC, Vol. 10, no. 2, pp. 275-290, 2016. [pdf]
[3] D. G. M. Mitchell, R. Smarandache, and D. J. Costello, Jr., “Quasi-Cyclic LDPC Codes Based on Pre-lifted Protographs”, IEEE Trans. Inform. Theory, Vol. 60 (10), pp. 5856-5874, 2014. [pdf]
[4] D. J. Costello, Jr., L. Dolecek, T. E. Fuja, J. Kliewer, D. G. M. Mitchell, and R. Smarandache, “Spatially Coupled Sparse Codes on Graphs - Theory and Practice”, IEEE Communications Magazine, Vol. 52 (7), pp. 168-176, 2014. [pdf]
[5] M. Haenggi and R. Smarandache, “
Diversity Polynomials for the Analysis of Temporal
Correlations in Wireless Networks”, IEEE
Trans. on Wireless Comm., Vol. 12 (11), pp.
5940-5951, 2013. [pdf]
[6] A. G. Dimakis, R. Smarandache, and P. O. Vontobel, “LDPC Codes for Compressed Sensing”, in IEEE Trans. Inform. Theory, Vol. 58 (5), pp. 3093–3114, 2012. [pdf]
[7] R. Smarandache and P. O. Vontobel,
“Quasi-Cyclic LDPC Codes: Influence of Proto- and
Tanner-Graph Structure on Minimum Hamming Distance
Upper Bounds”, IEEE Trans. In- form. Theory, Vol. 58
(2), pp. 585-607, 2012. [pdf]
[8] V. Tomas, J. Rosenthal, and R.
Smarandache, “Decoding of Convolutional Codes over the
Erasure Channel”, IEEE Trans. Inform. Theory, Vol. 58
(1), pp. 90-108, 2012. [pdf]
[9] A. E. Pusane, R. Smarandache, P. O.
Vontobel, and D. J. Costello, Jr., “Deriving Good LDPC
Convolutional Codes from LDPC Block Codes”, IEEE
Trans. Inform. Theory, Vol. 57 (2), pp. 835-857, 2011.
[pdf]
[10] R. Smarandache, A. Pusane, P. O.
Vontobel, and D. J. Costello, Jr., “Pseudo-Codeword
Performance Analysis for LDPC Convolutional Codes”,
IEEE Trans. Inform. Theory, Vol. 55 (6), pp.
2577-2598, 2009. [pdf]
[11] R. Hutchinson, R. Smarandache, and J.
Trumpf, “Superregular Matrices and the Construction of
Convolutional Codes having a Maximum Distance
Profile”, Linear Algebra and Its Applications, Vol.
428 (11-12), pp. 2585-2596, 2008. [pdf]
[12] R. Smarandache and P. O. Vontobel,
“Pseudo-codeword analysis of Tanner graphs from
projective and Euclidean planes”, IEEE Trans. Inform.
Theory, Vol. 53 (7), pp. 2376–2393, 2007. [pdf]
[13] R. Smarandache and M. Wauer, “Bounds on
the pseudo-weight of minimal pseudo-codewords of
projective geometry codes”, Contemporary Mathematics,
Algebra and Its Applications, Vol. 419, pp. 285–296,
2006. [pdf]
[14] H. Glu ̈sing-Lu ̈erßen, J. Rosenthal,
and R. Smarandache, “Strongly MDS convolutional
codes”, IEEE Trans. Inform. Theory, Vol. 52 (2), pp.
584–598, 2006. [pdf]
[15] R. Hutchinson, J. Rosenthal, and R.
Smarandache, “Convolutional codes with maximum
distance profile”, Systems & Control Letters, Vol.
54 (1), pp. 53-63, 2005. [pdf]
[16] R. Smarandache, H. Glu ̈sing-Lu ̈erßen,
and J. Rosenthal, “Constructions for MDS-convolutional
codes”, IEEE Trans. Inform. Theory, Vol. 47 (5), pp.
2045–2049, 2001. [pdf]
[17] R. Smarandache, “Unit memory
convolutional codes with maximum distance”, Codes,
Systems and Graphical Models, the IMA Volumes in
Mathematics and its Applications, Vol. 123, pp.
381–396, 2001. [pdf]
[18] J. Rosenthal and R. Smarandache, “Maximum distance separable convolutional codes”, Appl. Algebra Engrg. Comm. Comput., Vol. 10 (1), pp. 15–32, 1999. [pdf]
[25] V. Tomas, J. Rosenthal, and
R. Smarandache, “Reverse Maximum Distance
Profile Convolutional Codes over the Erasure
Channel”, 19th Int.
Symp. on Mathematical Theory of Networks and
Systems, Budapest,
Hungary, July 2010.
[27] A. E. Pusane, R. Smarandache, P. O. Vontobel, and D. J. Costello, Jr., “On the iterative decoding of LDPC convolutional codes”, 18th IEEE Signal Processing and Communications Applications Conference, Diyarbakir, Turkey, Apr. 2010. [pdf]
[29] R. Smarandache and M. F. Flanagan, “Spectral Graph Analysis of Quasi-Cyclic Codes”, IEEE Global Communications Conference, Honolulu, Hawaii, Dec. 2009. [pdf]
[30] R. Smarandache and P. O. Vontobel, “Absdet-Pseudo-Codewords and Perm-Pseudo-Codewords: Definitions and Properties”, IEEE Int. Symp. Information Theory, Seoul, South Korea, July 2009. [pdf]
[36] R. Smarandache and P. O. Vontobel, “On regular quasi-cyclic LDPC codes from binomials”, IEEE Int. Symp. Information Theory, Chicago, Illinois, July 2004. [pdf]
[37] M. Greferath, M. O’Sullivan, and R. Smarandache, “Construction of good LDPC codes using dilation matrices”, IEEE Int. Symp. Information Theory, Chicago, Illinois, July 2004. [pdf]
[39] M. O’Sullivan and R. Smarandache, “High-rate, short length, (3,3s)-regular LDPC Codes of girth 6 and 8”, IEEE Int. Symp. Information Theory, Yokohama, Japan, July 2003.[pdf]
[43] R. Smarandache, H. Glu ̈sing-Lu ̈erßen, and J. Rosenthal, “ Strongly MDS Convolutional Codes, A New Class of Codes with Maximal Decoding Capability' ”, IEEE Int. Symp. Information Theory, Lausanne, Switzerland, July 2002. [pdf]
[44] R. Smarandache and J. Rosenthal, “Construction Results for MDS-Convolutional Codes”, IEEE Int. Symp. Information Theory, Sorrento, Italy, July 2000. [pdf]
[45] J. Rosenthal and R. Smarandache, “On the dual of MDS convolutional codes”, 36-th Annual Allerton Conference on Communication, Control, and Computing, Monticello, Illinois, Oct. 1998.
[46] R. Smarandache and J. Rosenthal, “Convolutional code constructions resulting in maximal or near maximal free distance”, IEEE Int. Symp. Information Theory, Boston, Massachusetts, July 1998. [pdf]
[47] R. Smarandache, H. Glu ̈sing-Lu ̈erßen, and J. Rosenthal, “Generalized first order descriptions and canonical forms for convolutional codes”, 13th Int. Symp. on Mathematical Theory of Networks and Systems, Padova, Italy, July 1998.
[48] R. Smarandache and J. Rosenthal, “A state space approach for constructing MDS rate 1/n convolutional codes”, IEEE Information Theory Workshop, Killarney, Ireland, June 1998. [pdf]
[49] J. Rosenthal and R. Smarandache, “Construction of convolutional codes using methods from linear system theory”, 35th Annual Allerton Conference on Communication, Control, and Com- puting, Monticello, Illinois, Oct. 1997. [pdf]