Big Impact Publications* Source: ISI Web of Science - 8/13/2014

Our most cited papers...

1. Photochemistry on nonreactive and reactive (semiconductor) surfaces.
P.V. Kamat Chem. Rev. 1993, 93, 267-300. NDRL 3523
Cited 1283 times


2. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles.
J. Phys. Chem. B 2002, 106, 7729-7744. NDRL 4374 (Feature Article)
Cited 1163 times


3. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion.
Kamat, P. V. J. Phys. Chem. C 2007, 111 2834-2860. (Feature Article in February 22 2007 issue) NDRL 4697
Cited 1014 times


4. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvestors.
Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737-18753. NDRL 4770 (Centennial Feature Article)
Cited 969 times


5. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films.
Robel, I., Subramanian, V., Kuno, M. and Kamat, P. V. J. Am. Chem. Soc. 2006, 128 (7), 2385-2393. NDRL 4627
Cited 907 times


6. TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide.
Williams, G.; Seger, B.; Kamat, P. V. ACS Nano 2008, 2, 1487-1491 NDRL 4763
Cited 870 times


7. Catalysis with TiO2/Au Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration.
Subramanian, V., E.E. Wolf, and P.V. Kamat J. Am. Chem. Soc. 2004, 126, 4943-4950. NDRL 4496
Cited 731 times


8. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture.
Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M. K.; Kamat, P. V. J. Am. Chem. Soc. 2008, 130 4007 - 4015. NDRL 4752
Cited 721 times


9. Charge Transfer on the Nanoscale: Current Status
Adams, D.; Brus, L.; Chidsey, C. E. D.; Creager, S.; Cruetz, C.; Kagan, C. R.; Kamat, P. V.; Lieberman, M.; Lindsay, S.; Marcus, R. A.; Metzger, R. M.; Michel-Beyerle, M. E.; Miller, J. R.; Newton, M. D.; Rolison, D. R.; Sankey, O.; Schanze, K. S.; Yardley, J.; Zhu, X. J. Phys. Chem. B 2003, 107, 6668-6697. NDRL 4397
Cited 603 times


10. Semiconductor-Metal Composite Nanostructures. To What Extent Metal Nanoparticles (Au, Pt, Ir) Improve the Photocatalytic Activity of TiO2 Films?
Subramanian, V.; Wolf, E.; Kamat, P. V. J. Phys. Chem. B 2001, 105, 11439-11446. NDRL 4289
Cited 471 times


11. Decorating Graphene Sheets with Gold Nanoparticles
Muszynski, R.; Seger, B.; Kamat, P. J. Phys. Chem. C 2008, 112, 5263 - 5266. NDRL 4760
Cited 457 times


12. Chromophore-Functionalized Gold Nanoparticles.
K. George Thomas, P. V. Kamat Acc. Chem. Res. 2003, 36 (12) 888-898. NDRL 4440 (Review Article)
Cited 451 times


13. Electrochemically assisted photocatalysis. TiO2 particulate film electrodes for photocatalytic degradation of 4-chlorophenol.
K. Vinodgopal, S. Hotchandani, and P.V. Kamat J. Phys. Chem. 2005, 97, 9040-4. NDRL 3556
Cited 449 times


14. Picosecond dynamics of Silver nanoclusters. Photoejection of electrons and fragmentation.
Kamat, P. V.; Flumiani, M.; Hartland, G. J. Phys. Chem. B 1998, 102, 3123-3128. NDRL 4039
Cited 432 times


15. Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in PEM Fuel Cells
Seger, B.; Kamat, P. V. J. Phys. Chem. C 2009, 113 7990-7995. NDRL 4786
Cited 431 times


16. Charge Separation and Catalytic Activity of Ag@TiO2 Core-Shell Composite Clusters under UV-Irradiation.
Hirakawa, T. and Kamat, P. V. J. Am. Chem. Soc. 2005, 3928-3934. NDRL 4574
Cited 429 times


17. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films.
K. Vinodgopal and P. V. Kamat Environ. Sci. Technol. 1995, 29, 841-845. NDRL 3750
Cited 421 times


18. Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a 2-Dimensional Carbon Support
Kamat, P. V. J. Phys. Chem. Lett. 2010, 1, 520-527. (Perspective)
Cited 384 times


19. Photoelectrochemistry in semiconductor particulate systems. 16. Photophysical and photochemical aspects of coupled semiconductors. Charge-transfer processes in colloidal CdS-TiO2 and CdS-AgI systems.
K.R. Gopidas, M. Bohorquez, and P.V. Kamat J. Phys. Chem.
1990, 94, 6435-40.
Cited 364 times


20. Environmental photochemistry on semiconductor surfaces: A photosensitization approach for the degradation of a textile azo dye, Acid Orange 7.
K. Vinodgopal, D. Wynkoop, and P.V. Kamat Environ. Sci. Technol. 1996, 30, 1660-1666. NDRL 3868
Cited 361 times