H-Index of 102 (h index is the number of papers with same or greater citations)
H-Index of Living Chemists - Royal Society of Chemistry, December 2011
>36000 total citations (Impact Factor: >89 citations per paper)

Citation Report for Prashant V. Kamat * Source: ISI Web of Science - 4/16/2013

Hot off the Press

Our most recent papers...

466. Is Graphene a Stable Platform for Photocatalysis? Mineralization of Reduced Graphene Oxide with UV-Irradiated TiO2 Nanoparticles
Radich J. G.; Krenselewski, A.; Zhu, J.; Kamat, P. V. Chem. Mater. 2014, ASAP.

The recent thrust in utilizing reduced graphene oxide (RGO) as a support for nanostructured catalyst particles has led to the claims of improved efficiency in solar cells, fuel cells, and photocatalytic degradation of pollutants. Specifically, the robust TiO2 system is often coupled with RGO to improve charge separation and facilitate redox reactions. Here we probe the stability of RGO in the presence of UV-excited TiO2 in aqueous media and establish its reactivity towards OH radicals, a primary oxidant generated at the TiO2 surface. By probing changes in absorption, morphology and total organic carbon content (TOC) we conclusively demonstrate the vulnerability of RGO towards OH attack and raise the concern of its use in many applications where OH are likely to be formed. On the other hand, the OH radical-mediated mineralization could also enable new approaches in tackling environmental remediation of nanocarbons such as RGO, carbon nanotubes, and fullerenes.

465. Size Dependent Excited State Behavior of Glutathione Capped Gold Clusters and Their Light Harvesting Capacity
Stamplecoskie, K. G.; Kamat, P. V. J. Am. Chem. Soc. 2014, ASAP.

Glutathione protected gold clusters exhibit size dependent excited state and electron transfer properties. Larger size clusters (e.g., Au25GSH18) with core-metal atoms display rapid (<1 ps) as well as slower relaxation (~200 ns) while homoleptic clusters (e.g., Au10-12GSH10-12) exhibit only slower relaxation. These decay components have been identified as metal-metal transition and ligand-to-metal charge transfer respectively. The short lifetime relaxation component becomes less dominant as the size of the gold cluster decreases. The long-lived excited state and ability to participate in electron transfer are integral for these clusters to serve as light harvesting antennae. A strong correlation between the ligand-to-metal charge-transfer excited state lifetime and photocatalytic activity was evidenced from the electron transfer to methyl viologen. The photoactivity of these metal clusters show increasing photocatalytic reduction yield (0.05 - 0.14) with decreasing cluster size, Au25 < Au18 < Au15 < Au10-12. Gold clusters, Au18GSH14, were found to have the highest potential as a photosensitizer based on the quantum yield of electron transfer and good visible light absorption properties.

464. Size Dependent Energy Transfer Pathways in CdSe Quantum Dot-Squaraine Light Harvesting Assemblies: Förster versus Dexter
Hoffman, J. B.; Choi, H.; Kamat, P. V. J. Phys. Chem. C 2014, ASAP.

Energy transfer coupled with electron transfer is a convenient approach to mimic photosynthesis in light energy conversion. Better understanding of mechanistic details of energy transfer processes is important to enhance the performance of dye or quantum dot sensitized solar cells. Energy transfer through both long range dipole based Förster Resonance Energy Transfer (FRET), and short range Dexter Energy Transfer (DET) mechanisms have been identified to occur between CdSe quantum dots (QDs) linked to a red-infrared absorbing squaraine dye through a short thiol functional group (SQSH). Solutions of SQSH linked to CdSe were investigated through steady-state and time resolved spectroscopy experiments to explore both mechanisms. Photoluminescence studies revealed that smaller QDs had higher energy transfer efficiencies than predicted by FRET, and femtosecond transient absorption experiments revealed faster energy transfer rates in smaller donor QD sizes. These findings supported A DET process dominating at small donor sizes. The presence of both processes illustrates multiple strategies for utilizing energy transfer in light harvesting assemblies and the required considerations in device design to maximize energy transfer gains through either mechanism.

463. Sense and Shoot: Simultaneous Detection and Degradation of Low Level Contaminants using Graphene Based Smart Material Assembly
Alam, R.; Lightcap, I. V.; Karwacki, C. J.; Kamat, P. V. ACS Nano 2014, ASAP.

Smart material nanoassemblies that can simultaneously sense and shoot low level contaminants from air and water are important for overcoming the threat of hazardous chemicals. Graphene oxide (GO) sheets deposited on mesoscopic TiO2 films that underpin the deposition of Ag nanoparticles with UV-irradiation provide the foundation for the design of a smart material. The Ag particle size is readily controlled through precursor concentration and UV irradiation time. These semiconductor – graphene oxide – metal (SGM) films are SERS active and hence capable of sensing aromatic contaminants such as nitrobenzenethiol (NBT) in nanomolar range. Increased local concentration of organic molecule achieved through interaction with 2D carbon support (GO) facilitates low-level detection of contaminants. Upon UV irradiation of the NBT loaded SGM film, one can induce photocatalytic transformations. Thus, each component of the SGM film plays a pivotal role in aiding the detection and degradation of a contaminant dispersed in aqueous solutions. The advantage of using SGM films as multipurpose "detect and destroy" systems for nitroaromatic molecule is discussed.

462. Switching the Reaction Course of Electrochemical CO2 Reduction with Ionic Liquids
Sun, L.; Ramesha, G. K.; Kamat, P. V.; Brennecke, J. F. Langmuir 2014, 30 (21), 6302–6308.

The ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) offers new ways to modulate the electrochemical reduction of carbon dioxide. [emim][Tf2N], when present as the supporting electrolyte in acetonitrile, decreases the reduction overpotential at a Pb electrode by 0.18 V as compared to tetraethylammonium perchlorate as the supporting electrolyte. More interestingly, the ionic liquid shifts the reaction course during the electrochemical reduction of carbon dioxide by promoting the formation of carbon monoxide instead of oxalate anion. With increasing concentration of [emim][Tf2N], a carboxylate species with reduced CO2 covalently bonded to the imidazolium ring is formed along with carbon monoxide. The results highlight the catalytic effects of the medium in modulating the CO2 reduction products.

All Publications

Big Impact

Our most cited papers...

1. Photochemistry on nonreactive and reactive (semiconductor) surfaces.
P.V. Kamat Chem. Rev. 1993, 93, 267-300. NDRL 3523
Cited 1262 times

2. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles.
J. Phys. Chem. B 2002, 106, 7729-7744. NDRL 4374 (Feature Article)
Cited 1128 times

3. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion.
Kamat, P. V. J. Phys. Chem. C 2007, 111 2834-2860. (Feature Article in February 22 2007 issue) NDRL 4697
Cited 946 times

4. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvestors.
Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737-18753. NDRL 4770 (Centennial Feature Article)
Cited 888 times

5. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films.
Robel, I., Subramanian, V., Kuno, M. and Kamat, P. V. J. Am. Chem. Soc. 2006, 128 (7), 2385-2393. NDRL 4627
Cited 853 times

20 Most Cited

Editorial Publications

Editorials on scientific research and publication...

30. Why Did You Accept My Paper?
P.V. Kamat, O. Prezhdo, J.-E. Shea, G. Scholes, F. Zaera, T. Zwier, G. C. Schatz, J. Phys. Chem. Lett. 2014, 5 (14), 2443-2443.

29. Graphical Excellence
P.V. Kamat, G. V. Hartland, G. C. Schatz, J. Phys. Chem. Lett. 2014, 5 (12), 2118-2120.

28. Cite with a Sight
P.V. Kamat, G. C. Schatz, J. Phys. Chem. Lett. 2014, 5 (7), 1241–1242.

27. Organometal Halide Perovskites for Transformative Photovoltaics
P.V. Kamat, J. Am. Chem. Soc. 2014, 136 (10), 3713–3714.

26. Overcoming the Myths of the Review Process and Getting Your Paper Ready for Publication
P.V. Kamat; G. Scholes; O. Prezhdo; F. Zaera; T. Zwier; G. C. Schatz, J. Phys. Chem. Lett. 2014, 5, 896-899.

25. The Increasing Impact of Multimedia and Social Media in Scientific Publications
P.V. Kamat; G. C. Schatz, J. Phys. Chem. Lett. 2014, 1, 233-234.